Home.

 1:0 identities:   aa_,   a_a,   _aa skews aaa=a a♦1=a a♦2=a a♦3=a c'ty full — a'ty full — self-d'ty full — m'ty true all invertible

 2:0 identities:   aa_,   a_a,   _aa,   bb_,   b_b,   _bb skews aaa=a aab=b aba=b abb=a a♦1=a a♦2=a a♦3=a baa=b bab=a bba=a bbb=b b♦1=b b♦2=b b♦3=b c'ty full — a'ty full — self-d'ty full — m'ty true all invertible

 2:1 identities:   ab_,   a_b,   _ab,   ba_,   b_a,   _ba skews aaa=b aab=a aba=a abb=b a♦1=b a♦2=b a♦3=b baa=a bab=b bba=b bbb=a b♦1=a b♦2=a b♦3=a c'ty full — a'ty full — self-d'ty full — m'ty true all invertible

 3:0 identities:   aa_,   a_a,   _aa,   bc_,   b_c,   _bc,   cb_,   c_b,   _cb skews aaa=a aab=b aac=c aba=b abb=c abc=a aca=c acb=a acc=b a♦1=a a♦2=a a♦3=a baa=b bab=c bac=a bba=c bbb=a bbc=b bca=a bcb=b bcc=c b♦1=c b♦2=c b♦3=c caa=c cab=a cac=b cba=a cbb=b cbc=c cca=b ccb=c ccc=a c♦1=b c♦2=b c♦3=b c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 3:1 identities:   aa_,   a_a,   bb_,   b_b,   cc_,   c_c skews aaa=a aab=b aac=c aba=b abb=c abc=a aca=c acb=a acc=b a♦1=a a♦2=a a♦3=a baa=c bab=a bac=b bba=a bbb=b bbc=c bca=b bcb=c bcc=a b♦1=b b♦2=b b♦3=b caa=b cab=c cac=a cba=c cbb=a cbc=b cca=a ccb=b ccc=c c♦1=c c♦2=c c♦3=c c'ty dexterior — a'ty none — self-d'ty full — m'ty true all invertible

 3:2 identities:   aa_,   _aa,   bb_,   _bb,   cc_,   _cc skews aaa=a aab=b aac=c aba=c abb=a abc=b aca=b acb=c acc=a a♦1=a a♦2=a a♦3=a baa=b bab=c bac=a bba=a bbb=b bbc=c bca=c bcb=a bcc=b b♦1=b b♦2=b b♦3=b caa=c cab=a cac=b cba=b cbb=c cbc=a cca=a ccb=b ccc=c c♦1=c c♦2=c c♦3=c c'ty exterior — a'ty full — self-d'ty full — m'ty true all invertible

 3:3 identities:   aa_,   bc_,   cb_ skews aaa=a aab=b aac=c aba=c abb=a abc=b aca=b acb=c acc=a a♦1=a a♦2=a a♦3=a baa=c bab=a bac=b bba=b bbb=c bbc=a bca=a bcb=b bcc=c b♦1=c b♦2=c b♦3=a caa=b cab=c cac=a cba=a cbb=b cbc=c cca=c ccb=a ccc=b c♦1=b c♦2=b c♦3=a c'ty sinisterior — a'ty none — self-d'ty none — m'ty true

 3:4 identities:   a_a,   _aa,   b_b,   _bb,   c_c,   _cc skews aaa=a aab=c aac=b aba=b abb=a abc=c aca=c acb=b acc=a a♦1=a a♦2=a a♦3=a baa=b bab=a bac=c bba=c bbb=b bbc=a bca=a bcb=c bcc=b b♦1=b b♦2=b b♦3=b caa=c cab=b cac=a cba=a cbb=c cbc=b cca=b ccb=a ccc=c c♦1=c c♦2=c c♦3=c c'ty sinisterior — a'ty none — self-d'ty full — m'ty true all invertible

 3:5 identities:   a_a,   b_c,   c_b skews aaa=a aab=c aac=b aba=b abb=a abc=c aca=c acb=b acc=a a♦1=a a♦2=a a♦3=a baa=c bab=b bac=a bba=a bbb=c bbc=b bca=b bcb=a bcc=c b♦1=c b♦2=a b♦3=c caa=b cab=a cac=c cba=c cbb=b cbc=a cca=a ccb=c ccc=b c♦1=b c♦2=a c♦3=b c'ty exterior — a'ty none — self-d'ty none — m'ty true

 3:6 identities:   _aa,   _bc,   _cb skews aaa=a aab=c aac=b aba=c abb=b abc=a aca=b acb=a acc=c a♦1=a a♦2=a a♦3=a baa=b bab=a bac=c bba=a bbb=c bbc=b bca=c bcb=b bcc=a b♦1=a b♦2=c b♦3=c caa=c cab=b cac=a cba=b cbb=a cbc=c cca=a ccb=c ccc=b c♦1=a c♦2=b c♦3=b c'ty dexterior — a'ty none — self-d'ty none — m'ty true

 3:7 identities:   none skews aaa=a aab=c aac=b aba=c abb=b abc=a aca=b acb=a acc=c a♦1=a a♦2=a a♦3=a baa=c bab=b bac=a bba=b bbb=a bbc=c bca=a bcb=c bcc=b b♦1=a b♦2=a b♦3=a caa=b cab=a cac=c cba=a cbb=c cbc=b cca=c ccb=b ccc=a c♦1=a c♦2=a c♦3=a c'ty full — a'ty none — self-d'ty none — m'ty true

 3:8 identities:   none skews aaa=b aab=a aac=c aba=a abb=c abc=b aca=c acb=b acc=a a♦1=b a♦2=b a♦3=b baa=a bab=c bac=b bba=c bbb=b bbc=a bca=b bcb=a bcc=c b♦1=b b♦2=b b♦3=b caa=c cab=b cac=a cba=b cbb=a cbc=c cca=a ccb=c ccc=b c♦1=b c♦2=b c♦3=b c'ty full — a'ty none — self-d'ty none — m'ty true

 3:9 identities:   _ab,   _ba,   _cc skews aaa=b aab=a aac=c aba=a abb=c abc=b aca=c acb=b acc=a a♦1=c a♦2=b a♦3=b baa=c bab=b bac=a bba=b bbb=a bbc=c bca=a bcb=c bcc=b b♦1=c b♦2=a b♦3=a caa=a cab=c cac=b cba=c cbb=b cbc=a cca=b ccb=a ccc=c c♦1=c c♦2=c c♦3=c c'ty dexterior — a'ty none — self-d'ty none — m'ty true

 3:10 identities:   a_b,   b_a,   c_c skews aaa=b aab=a aac=c aba=c abb=b abc=a aca=a acb=c acc=b a♦1=b a♦2=c a♦3=b baa=a bab=c bac=b bba=b bbb=a bbc=c bca=c bcb=b bcc=a b♦1=a b♦2=c b♦3=a caa=c cab=b cac=a cba=a cbb=c cbc=b cca=b ccb=a ccc=c c♦1=c c♦2=c c♦3=c c'ty exterior — a'ty none — self-d'ty none — m'ty true

 3:11 identities:   a_b,   _ab,   b_c,   _bc,   c_a,   _ca skews aaa=b aab=a aac=c aba=c abb=b abc=a aca=a acb=c acc=b a♦1=c a♦2=c a♦3=b baa=c bab=b bac=a bba=a bbb=c bbc=b bca=b bcb=a bcc=c b♦1=a b♦2=a b♦3=c caa=a cab=c cac=b cba=b cbb=a cbc=c cca=c ccb=b ccc=a c♦1=b c♦2=b c♦3=a c'ty sinisterior — a'ty none — self-d'ty sinisterior, interior — m'ty true all invertible

 3:12 identities:   ab_,   ba_,   cc_ skews aaa=b aab=c aac=a aba=a abb=b abc=c aca=c acb=a acc=b a♦1=b a♦2=b a♦3=c baa=a bab=b bac=c bba=c bbb=a bbc=b bca=b bcb=c bcc=a b♦1=a b♦2=a b♦3=c caa=c cab=a cac=b cba=b cbb=c cbc=a cca=a ccb=b ccc=c c♦1=c c♦2=c c♦3=c c'ty sinisterior — a'ty none — self-d'ty none — m'ty true

 3:13 identities:   ab_,   _ac,   _ba,   bc_,   ca_,   _cb skews aaa=b aab=c aac=a aba=a abb=b abc=c aca=c acb=a acc=b a♦1=c a♦2=b a♦3=c baa=c bab=a bac=b bba=b bbb=c bbc=a bca=a bcb=b bcc=c b♦1=a b♦2=c b♦3=a caa=a cab=b cac=c cba=c cbb=a cbc=b cca=b ccb=c ccc=a c♦1=b c♦2=a c♦3=b c'ty exterior — a'ty exterior — self-d'ty sinisterior, dexterior — m'ty true all invertible

 3:14 identities:   ac_,   a_c,   ba_,   b_a,   cb_,   c_b skews aaa=b aab=c aac=a aba=c abb=a abc=b aca=a acb=b acc=c a♦1=b a♦2=c a♦3=c baa=a bab=b bac=c bba=b bbb=c bbc=a bca=c bcb=a bcc=b b♦1=c b♦2=a b♦3=a caa=c cab=a cac=b cba=a cbb=b cbc=c cca=b ccb=c ccc=a c♦1=a c♦2=b c♦3=b c'ty dexterior — a'ty none — self-d'ty interior, dexterior — m'ty true all invertible

 3:15 identities:   ac_,   a_c,   _ac,   bb_,   b_b,   _bb,   ca_,   c_a,   _ca skews aaa=b aab=c aac=a aba=c abb=a abc=b aca=a acb=b acc=c a♦1=c a♦2=c a♦3=c baa=c bab=a bac=b bba=a bbb=b bbc=c bca=b bcb=c bcc=a b♦1=b b♦2=b b♦3=b caa=a cab=b cac=c cba=b cbb=c cbc=a cca=c ccb=a ccc=b c♦1=a c♦2=a c♦3=a c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 3:16 identities:   ab_,   a_b,   _ab,   ba_,   b_a,   _ba,   cc_,   c_c,   _cc skews aaa=c aab=a aac=b aba=a abb=b abc=c aca=b acb=c acc=a a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bba=b bbb=c bbc=a bca=c bcb=a bcc=b b♦1=a b♦2=a b♦3=a caa=b cab=c cac=a cba=c cbb=a cbc=b cca=a ccb=b ccc=c c♦1=c c♦2=c c♦3=c c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 3:17 identities:   ab_,   a_b,   bc_,   b_c,   ca_,   c_a skews aaa=c aab=a aac=b aba=a abb=b abc=c aca=b acb=c acc=a a♦1=c a♦2=b a♦3=b baa=b bab=c bac=a bba=c bbb=a bbc=b bca=a bcb=b bcc=c b♦1=a b♦2=c b♦3=c caa=a cab=b cac=c cba=b cbb=c cbc=a cca=c ccb=a ccc=b c♦1=b c♦2=a c♦3=a c'ty dexterior — a'ty none — self-d'ty interior, dexterior — m'ty true all invertible

 3:18 identities:   _ab,   ac_,   ba_,   _bc,   _ca,   cb_ skews aaa=c aab=a aac=b aba=b abb=c abc=a aca=a acb=b acc=c a♦1=b a♦2=c a♦3=b baa=a bab=b bac=c bba=c bbb=a bbc=b bca=b bcb=c bcc=a b♦1=c b♦2=a b♦3=c caa=b cab=c cac=a cba=a cbb=b cbc=c cca=c ccb=a ccc=b c♦1=a c♦2=b c♦3=a c'ty exterior — a'ty exterior — self-d'ty sinisterior, dexterior — m'ty true all invertible

 3:19 identities:   ac_,   bb_,   ca_ skews aaa=c aab=a aac=b aba=b abb=c abc=a aca=a acb=b acc=c a♦1=c a♦2=c a♦3=b baa=b bab=c bac=a bba=a bbb=b bbc=c bca=c bcb=a bcc=b b♦1=b b♦2=b b♦3=b caa=a cab=b cac=c cba=c cbb=a cbc=b cca=b ccb=c ccc=a c♦1=a c♦2=a c♦3=b c'ty sinisterior — a'ty none — self-d'ty none — m'ty true

 3:20 identities:   a_c,   _ac,   b_a,   _ba,   c_b,   _cb skews aaa=c aab=b aac=a aba=a abb=c abc=b aca=b acb=a acc=c a♦1=b a♦2=b a♦3=c baa=a bab=c bac=b bba=b bbb=a bbc=c bca=c bcb=b bcc=a b♦1=c b♦2=c b♦3=a caa=b cab=a cac=c cba=c cbb=b cbc=a cca=a ccb=c ccc=b c♦1=a c♦2=a c♦3=b c'ty sinisterior — a'ty none — self-d'ty sinisterior, interior — m'ty true all invertible

 3:21 identities:   a_c,   b_b,   c_a skews aaa=c aab=b aac=a aba=a abb=c abc=b aca=b acb=a acc=c a♦1=c a♦2=b a♦3=c baa=b bab=a bac=c bba=c bbb=b bbc=a bca=a bcb=c bcc=b b♦1=b b♦2=b b♦3=b caa=a cab=c cac=b cba=b cbb=a cbc=c cca=c ccb=b ccc=a c♦1=a c♦2=b c♦3=a c'ty exterior — a'ty none — self-d'ty none — m'ty true

 3:22 identities:   _ac,   _bb,   _ca skews aaa=c aab=b aac=a aba=b abb=a abc=c aca=a acb=c acc=b a♦1=b a♦2=c a♦3=c baa=a bab=c bac=b bba=c bbb=b bbc=a bca=b bcb=a bcc=c b♦1=b b♦2=b b♦3=b caa=b cab=a cac=c cba=a cbb=c cbc=b cca=c ccb=b ccc=a c♦1=b c♦2=a c♦3=a c'ty dexterior — a'ty none — self-d'ty none — m'ty true

 3:23 identities:   none skews aaa=c aab=b aac=a aba=b abb=a abc=c aca=a acb=c acc=b a♦1=c a♦2=c a♦3=c baa=b bab=a bac=c bba=a bbb=c bbc=b bca=c bcb=b bcc=a b♦1=c b♦2=c b♦3=c caa=a cab=c cac=b cba=c cbb=b cbc=a cca=b ccb=a ccc=c c♦1=c c♦2=c c♦3=c c'ty full — a'ty none — self-d'ty none — m'ty true