Below appear the fully associative ternary quasigroups for C ≤ 5.

 1:0 identities:   aa_,   a_a,   _aa skews allinvertible aaa=a c'ty full — a'ty full — self-d'ty full — m'ty true a♦1=a a♦2=a a♦3=a

 2:0 identities:   aa_,   a_a,   _aa,   bb_,   b_b,   _bb skews aaa=a aab=b aba=b abb=a a♦1=a a♦2=a a♦3=a baa=b bab=a bba=a bbb=b b♦1=b b♦2=b b♦3=b c'ty full — a'ty full — self-d'ty full — m'ty true all invertible

 2:1 identities:   ab_,   b_a,   _ab,   ba_,   a_b,   _ba skews aaa=b aab=a aba=a abb=b a♦1=b a♦2=b a♦3=b baa=a bab=b bba=b bbb=a b♦1=a b♦2=a b♦3=a c'ty full — a'ty full — self-d'ty full — m'ty true all invertible

 3:0 identities:   aa_,   a_a,   _aa,   bc_,   c_b,   _bc,   cb_,   b_c,   _cb skews aaa=a aab=b aac=c aba=b abb=c abc=a aca=c acb=a acc=b a♦1=a a♦2=a a♦3=a baa=b bab=c bac=a bba=c bbb=a bbc=b bca=a bcb=b bcc=c b♦1=c b♦2=c b♦3=c caa=c cab=a cac=b cba=a cbb=b cbc=c cca=b ccb=c ccc=a c♦1=b c♦2=b c♦3=b c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 3:2 identities:   aa_,   _aa,   bb_,   _bb,   cc_,   _cc skews aaa=a aab=b aac=c aba=c abb=a abc=b aca=b acb=c acc=a a♦1=a a♦2=a a♦3=a baa=b bab=c bac=a bba=a bbb=b bbc=c bca=c bcb=a bcc=b b♦1=b b♦2=b b♦3=b caa=c cab=a cac=b cba=b cbb=c cbc=a cca=a ccb=b ccc=c c♦1=c c♦2=c c♦3=c c'ty exterior — a'ty full — self-d'ty full — m'ty true all invertible

 3:15 identities:   ac_,   c_a,   _ac,   bb_,   b_b,   _bb,   ca_,   a_c,   _ca skews aaa=b aab=c aac=a aba=c abb=a abc=b aca=a acb=b acc=c a♦1=c a♦2=c a♦3=c baa=c bab=a bac=b bba=a bbb=b bbc=c bca=b bcb=c bcc=a b♦1=b b♦2=b b♦3=b caa=a cab=b cac=c cba=b cbb=c cbc=a cca=c ccb=a ccc=b c♦1=a c♦2=a c♦3=a c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 3:16 identities:   ab_,   b_a,   _ab,   ba_,   a_b,   _ba,   cc_,   c_c,   _cc skews aaa=c aab=a aac=b aba=a abb=b abc=c aca=b acb=c acc=a a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bba=b bbb=c bbc=a bca=c bcb=a bcc=b b♦1=a b♦2=a b♦3=a caa=b cab=c cac=a cba=c cbb=a cbc=b cca=a ccb=b ccc=c c♦1=c c♦2=c c♦3=c c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 4:0 identities:   aa_,   a_a,   _aa,   bb_,   b_b,   _bb,   cc_,   c_c,   _cc,   dd_,   d_d,   _dd skews aaa=a aab=b aac=c aad=d aba=b abb=a abc=d abd=c aca=c acb=d acc=a acd=b ada=d adb=c adc=b add=a a♦1=a a♦2=a a♦3=a baa=b bab=a bac=d bad=c bba=a bbb=b bbc=c bbd=d bca=d bcb=c bcc=b bcd=a bda=c bdb=d bdc=a bdd=b b♦1=b b♦2=b b♦3=b caa=c cab=d cac=a cad=b cba=d cbb=c cbc=b cbd=a cca=a ccb=b ccc=c ccd=d cda=b cdb=a cdc=d cdd=c c♦1=c c♦2=c c♦3=c daa=d dab=c dac=b dad=a dba=c dbb=d dbc=a dbd=b dca=b dcb=a dcc=d dcd=c dda=a ddb=b ddc=c ddd=d d♦1=d d♦2=d d♦3=d c'ty full — a'ty full — self-d'ty full — m'ty true — decomp sinister, dexterior all invertible

 4:139 identities:   aa_,   a_a,   _aa,   bb_,   b_b,   _bb,   cd_,   d_c,   _cd,   dc_,   c_d,   _dc skews aaa=a aab=b aac=c aad=d aba=b abb=a abc=d abd=c aca=c acb=d acc=b acd=a ada=d adb=c adc=a add=b a♦1=a a♦2=a a♦3=a baa=b bab=a bac=d bad=c bba=a bbb=b bbc=c bbd=d bca=d bcb=c bcc=a bcd=b bda=c bdb=d bdc=b bdd=a b♦1=b b♦2=b b♦3=b caa=c cab=d cac=b cad=a cba=d cbb=c cbc=a cbd=b cca=b ccb=a ccc=d ccd=c cda=a cdb=b cdc=c cdd=d c♦1=d c♦2=d c♦3=d daa=d dab=c dac=a dad=b dba=c dbb=d dbc=b dbd=a dca=a dcb=b dcc=c dcd=d dda=b ddb=a ddc=d ddd=c d♦1=c d♦2=c d♦3=c c'ty full — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:220 identities:   aa_,   _aa,   bb_,   _bb,   cc_,   _cc,   dd_,   _dd skews aaa=a aab=b aac=c aad=d aba=b abb=a abc=d abd=c aca=d acb=c acc=a acd=b ada=c adb=d adc=b add=a a♦1=a a♦2=a a♦3=a baa=b bab=a bac=d bad=c bba=a bbb=b bbc=c bbd=d bca=c bcb=d bcc=b bcd=a bda=d bdb=c bdc=a bdd=b b♦1=b b♦2=b b♦3=b caa=c cab=d cac=b cad=a cba=d cbb=c cbc=a cbd=b cca=a ccb=b ccc=c ccd=d cda=b cdb=a cdc=d cdd=c c♦1=c c♦2=c c♦3=c daa=d dab=c dac=a dad=b dba=c dbb=d dbc=b dbd=a dca=b dcb=a dcc=d dcd=c dda=a ddb=b ddc=c ddd=d d♦1=d d♦2=d d♦3=d c'ty exterior — a'ty full — self-d'ty full — m'ty true — decomp sinister, dexterior all invertible

 4:303 identities:   aa_,   _aa,   bb_,   _bb,   cd_,   _cd,   dc_,   _dc skews aaa=a aab=b aac=c aad=d aba=b abb=a abc=d abd=c aca=d acb=c acc=b acd=a ada=c adb=d adc=a add=b a♦1=a a♦2=a a♦3=a baa=b bab=a bac=d bad=c bba=a bbb=b bbc=c bbd=d bca=c bcb=d bcc=a bcd=b bda=d bdb=c bdc=b bdd=a b♦1=b b♦2=b b♦3=b caa=c cab=d cac=a cad=b cba=d cbb=c cbc=b cbd=a cca=b ccb=a ccc=d ccd=c cda=a cdb=b cdc=c cdd=d c♦1=d c♦2=d c♦3=d daa=d dab=c dac=b dad=a dba=c dbb=d dbc=a dbd=b dca=a dcb=b dcc=c dcd=d dda=b ddb=a ddc=d ddd=c d♦1=c d♦2=c d♦3=c c'ty exterior — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:452 identities:   aa_,   a_a,   _aa,   bd_,   d_b,   _bd,   cc_,   c_c,   _cc,   db_,   b_d,   _db skews aaa=a aab=b aac=c aad=d aba=b abb=c abc=d abd=a aca=c acb=d acc=a acd=b ada=d adb=a adc=b add=c a♦1=a a♦2=a a♦3=a baa=b bab=c bac=d bad=a bba=c bbb=d bbc=a bbd=b bca=d bcb=a bcc=b bcd=c bda=a bdb=b bdc=c bdd=d b♦1=d b♦2=d b♦3=d caa=c cab=d cac=a cad=b cba=d cbb=a cbc=b cbd=c cca=a ccb=b ccc=c ccd=d cda=b cdb=c cdc=d cdd=a c♦1=c c♦2=c c♦3=c daa=d dab=a dac=b dad=c dba=a dbb=b dbc=c dbd=d dca=b dcb=c dcc=d dcd=a dda=c ddb=d ddc=a ddd=b d♦1=b d♦2=b d♦3=b c'ty full — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:626 identities:   aa_,   a_a,   _aa,   bc_,   c_b,   _bc,   cb_,   b_c,   _cb,   dd_,   d_d,   _dd skews aaa=a aab=b aac=c aad=d aba=b abb=d abc=a abd=c aca=c acb=a acc=d acd=b ada=d adb=c adc=b add=a a♦1=a a♦2=a a♦3=a baa=b bab=d bac=a bad=c bba=d bbb=c bbc=b bbd=a bca=a bcb=b bcc=c bcd=d bda=c bdb=a bdc=d bdd=b b♦1=c b♦2=c b♦3=c caa=c cab=a cac=d cad=b cba=a cbb=b cbc=c cbd=d cca=d ccb=c ccc=b ccd=a cda=b cdb=d cdc=a cdd=c c♦1=b c♦2=b c♦3=b daa=d dab=c dac=b dad=a dba=c dbb=a dbc=d dbd=b dca=b dcb=d dcc=a dcd=c dda=a ddb=b ddc=c ddd=d d♦1=d d♦2=d d♦3=d c'ty full — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:784 identities:   aa_,   _aa,   bb_,   _bb,   cc_,   _cc,   dd_,   _dd skews aaa=a aab=b aac=c aad=d aba=c abb=a abc=d abd=b aca=b acb=d acc=a acd=c ada=d adb=c adc=b add=a a♦1=a a♦2=a a♦3=a baa=b bab=d bac=a bad=c bba=a bbb=b bbc=c bbd=d bca=d bcb=c bcc=b bcd=a bda=c bdb=a bdc=d bdd=b b♦1=b b♦2=b b♦3=b caa=c cab=a cac=d cad=b cba=d cbb=c cbc=b cbd=a cca=a ccb=b ccc=c ccd=d cda=b cdb=d cdc=a cdd=c c♦1=c c♦2=c c♦3=c daa=d dab=c dac=b dad=a dba=b dbb=d dbc=a dbd=c dca=c dcb=a dcc=d dcd=b dda=a ddb=b ddc=c ddd=d d♦1=d d♦2=d d♦3=d c'ty exterior — a'ty full — self-d'ty full — m'ty true — decomp sinister, dexterior all invertible

 4:942 identities:   aa_,   _aa,   bc_,   _bc,   cb_,   _cb,   dd_,   _dd skews aaa=a aab=b aac=c aad=d aba=c abb=d abc=a abd=b aca=b acb=a acc=d acd=c ada=d adb=c adc=b add=a a♦1=a a♦2=a a♦3=a baa=b bab=a bac=d bad=c bba=d bbb=c bbc=b bbd=a bca=a bcb=b bcc=c bcd=d bda=c bdb=d bdc=a bdd=b b♦1=c b♦2=c b♦3=c caa=c cab=d cac=a cad=b cba=a cbb=b cbc=c cbd=d cca=d ccb=c ccc=b ccd=a cda=b cdb=a cdc=d cdd=c c♦1=b c♦2=b c♦3=b daa=d dab=c dac=b dad=a dba=b dbb=a dbc=d dbd=c dca=c dcb=d dcc=a dcd=b dda=a ddb=b ddc=c ddd=d d♦1=d d♦2=d d♦3=d c'ty exterior — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:1632 identities:   aa_,   _aa,   bb_,   _bb,   cc_,   _cc,   dd_,   _dd skews aaa=a aab=b aac=c aad=d aba=d abb=a abc=b abd=c aca=c acb=d acc=a acd=b ada=b adb=c adc=d add=a a♦1=a a♦2=a a♦3=a baa=b bab=c bac=d bad=a bba=a bbb=b bbc=c bbd=d bca=d bcb=a bcc=b bcd=c bda=c bdb=d bdc=a bdd=b b♦1=b b♦2=b b♦3=b caa=c cab=d cac=a cad=b cba=b cbb=c cbc=d cbd=a cca=a ccb=b ccc=c ccd=d cda=d cdb=a cdc=b cdd=c c♦1=c c♦2=c c♦3=c daa=d dab=a dac=b dad=c dba=c dbb=d dbc=a dbd=b dca=b dcb=c dcc=d dcd=a dda=a ddb=b ddc=c ddd=d d♦1=d d♦2=d d♦3=d c'ty exterior — a'ty full — self-d'ty full — m'ty true — decomp sinister, dexterior all invertible

 4:2187 identities:   aa_,   _aa,   bd_,   _bd,   cc_,   _cc,   db_,   _db skews aaa=a aab=b aac=c aad=d aba=d abb=c abc=b abd=a aca=c acb=d acc=a acd=b ada=b adb=a adc=d add=c a♦1=a a♦2=a a♦3=a baa=b bab=a bac=d bad=c bba=c bbb=d bbc=a bbd=b bca=d bcb=c bcc=b bcd=a bda=a bdb=b bdc=c bdd=d b♦1=d b♦2=d b♦3=d caa=c cab=d cac=a cad=b cba=b cbb=a cbc=d cbd=c cca=a ccb=b ccc=c ccd=d cda=d cdb=c cdc=b cdd=a c♦1=c c♦2=c c♦3=c daa=d dab=c dac=b dad=a dba=a dbb=b dbc=c dbd=d dca=b dcb=a dcc=d dcd=c dda=c ddb=d ddc=a ddd=b d♦1=b d♦2=b d♦3=b c'ty exterior — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:16140 identities:   ab_,   _ab,   ba_,   _ba,   cc_,   _cc,   dd_,   _dd skews aaa=b aab=a aac=d aad=c aba=a abb=b abc=c abd=d aca=c acb=d acc=a acd=b ada=d adb=c adc=b add=a a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bad=d bba=b bbb=a bbc=d bbd=c bca=d bcb=c bcc=b bcd=a bda=c bdb=d bdc=a bdd=b b♦1=a b♦2=a b♦3=a caa=d cab=c cac=b cad=a cba=c cbb=d cbc=a cbd=b cca=a ccb=b ccc=c ccd=d cda=b cdb=a cdc=d cdd=c c♦1=c c♦2=c c♦3=c daa=c dab=d dac=a dad=b dba=d dbb=c dbc=b dbd=a dca=b dcb=a dcc=d dcd=c dda=a ddb=b ddc=c ddd=d d♦1=d d♦2=d d♦3=d c'ty exterior — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:16271 identities:   ab_,   _ab,   ba_,   _ba,   cd_,   _cd,   dc_,   _dc skews aaa=b aab=a aac=d aad=c aba=a abb=b abc=c abd=d aca=c acb=d acc=b acd=a ada=d adb=c adc=a add=b a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bad=d bba=b bbb=a bbc=d bbd=c bca=d bcb=c bcc=a bcd=b bda=c bdb=d bdc=b bdd=a b♦1=a b♦2=a b♦3=a caa=d cab=c cac=a cad=b cba=c cbb=d cbc=b cbd=a cca=b ccb=a ccc=d ccd=c cda=a cdb=b cdc=c cdd=d c♦1=d c♦2=d c♦3=d daa=c dab=d dac=b dad=a dba=d dbb=c dbc=a dbd=b dca=a dcb=b dcc=c dcd=d dda=b ddb=a ddc=d ddd=c d♦1=c d♦2=c d♦3=c c'ty exterior — a'ty full — self-d'ty full — m'ty true — decomp sinister, dexterior all invertible

 4:16352 identities:   ab_,   b_a,   _ab,   ba_,   a_b,   _ba,   cc_,   c_c,   _cc,   dd_,   d_d,   _dd skews aaa=b aab=a aac=d aad=c aba=a abb=b abc=c abd=d aca=d acb=c acc=a acd=b ada=c adb=d adc=b add=a a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bad=d bba=b bbb=a bbc=d bbd=c bca=c bcb=d bcc=b bcd=a bda=d bdb=c bdc=a bdd=b b♦1=a b♦2=a b♦3=a caa=d cab=c cac=a cad=b cba=c cbb=d cbc=b cbd=a cca=a ccb=b ccc=c ccd=d cda=b cdb=a cdc=d cdd=c c♦1=c c♦2=c c♦3=c daa=c dab=d dac=b dad=a dba=d dbb=c dbc=a dbd=b dca=b dcb=a dcc=d dcd=c dda=a ddb=b ddc=c ddd=d d♦1=d d♦2=d d♦3=d c'ty full — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:16443 identities:   ab_,   b_a,   _ab,   ba_,   a_b,   _ba,   cd_,   d_c,   _cd,   dc_,   c_d,   _dc skews aaa=b aab=a aac=d aad=c aba=a abb=b abc=c abd=d aca=d acb=c acc=b acd=a ada=c adb=d adc=a add=b a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bad=d bba=b bbb=a bbc=d bbd=c bca=c bcb=d bcc=a bcd=b bda=d bdb=c bdc=b bdd=a b♦1=a b♦2=a b♦3=a caa=d cab=c cac=b cad=a cba=c cbb=d cbc=a cbd=b cca=b ccb=a ccc=d ccd=c cda=a cdb=b cdc=c cdd=d c♦1=d c♦2=d c♦3=d daa=c dab=d dac=a dad=b dba=d dbb=c dbc=b dbd=a dca=a dcb=b dcc=c dcd=d dda=b ddb=a ddc=d ddd=c d♦1=c d♦2=c d♦3=c c'ty full — a'ty full — self-d'ty full — m'ty true — decomp sinister, dexterior all invertible

 4:22241 identities:   ad_,   d_a,   _ad,   bc_,   c_b,   _bc,   cb_,   b_c,   _cb,   da_,   a_d,   _da skews aaa=b aab=c aac=d aad=a aba=c abb=d abc=a abd=b aca=d acb=a acc=b acd=c ada=a adb=b adc=c add=d a♦1=d a♦2=d a♦3=d baa=c bab=d bac=a bad=b bba=d bbb=a bbc=b bbd=c bca=a bcb=b bcc=c bcd=d bda=b bdb=c bdc=d bdd=a b♦1=c b♦2=c b♦3=c caa=d cab=a cac=b cad=c cba=a cbb=b cbc=c cbd=d cca=b ccb=c ccc=d ccd=a cda=c cdb=d cdc=a cdd=b c♦1=b c♦2=b c♦3=b daa=a dab=b dac=c dad=d dba=b dbb=c dbc=d dbd=a dca=c dcb=d dcc=a dcd=b dda=d ddb=a ddc=b ddd=c d♦1=a d♦2=a d♦3=a c'ty full — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:25256 identities:   ac_,   c_a,   _ac,   bd_,   d_b,   _bd,   ca_,   a_c,   _ca,   db_,   b_d,   _db skews aaa=b aab=d aac=a aad=c aba=d abb=c abc=b abd=a aca=a acb=b acc=c acd=d ada=c adb=a adc=d add=b a♦1=c a♦2=c a♦3=c baa=d bab=c bac=b bad=a bba=c bbb=a bbc=d bbd=b bca=b bcb=d bcc=a bcd=c bda=a bdb=b bdc=c bdd=d b♦1=d b♦2=d b♦3=d caa=a cab=b cac=c cad=d cba=b cbb=d cbc=a cbd=c cca=c ccb=a ccc=d ccd=b cda=d cdb=c cdc=b cdd=a c♦1=a c♦2=a c♦3=a daa=c dab=a dac=d dad=b dba=a dbb=b dbc=c dbd=d dca=d dcb=c dcc=b dcd=a dda=b ddb=d ddc=a ddd=c d♦1=b d♦2=b d♦3=b c'ty full — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:30039 identities:   ab_,   b_a,   _ab,   ba_,   a_b,   _ba,   cd_,   d_c,   _cd,   dc_,   c_d,   _dc skews aaa=c aab=a aac=d aad=b aba=a abb=b abc=c abd=d aca=d acb=c acc=b acd=a ada=b adb=d adc=a add=c a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bad=d bba=b bbb=d bbc=a bbd=c bca=c bcb=a bcc=d bcd=b bda=d bdb=c bdc=b bdd=a b♦1=a b♦2=a b♦3=a caa=d cab=c cac=b cad=a cba=c cbb=a cbc=d cbd=b cca=b ccb=d ccc=a ccd=c cda=a cdb=b cdc=c cdd=d c♦1=d c♦2=d c♦3=d daa=b dab=d dac=a dad=c dba=d dbb=c dbc=b dbd=a dca=a dcb=b dcc=c dcd=d dda=c ddb=a ddc=d ddd=b d♦1=c d♦2=c d♦3=c c'ty full — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:37907 identities:   ac_,   _ac,   bb_,   _bb,   ca_,   _ca,   dd_,   _dd skews aaa=c aab=d aac=a aad=b aba=b abb=a abc=d abd=c aca=a acb=b acc=c acd=d ada=d adb=c adc=b add=a a♦1=c a♦2=c a♦3=c baa=d bab=c bac=b bad=a bba=a bbb=b bbc=c bbd=d bca=b bcb=a bcc=d bcd=c bda=c bdb=d bdc=a bdd=b b♦1=b b♦2=b b♦3=b caa=a cab=b cac=c cad=d cba=d cbb=c cbc=b cbd=a cca=c ccb=d ccc=a ccd=b cda=b cdb=a cdc=d cdd=c c♦1=a c♦2=a c♦3=a daa=b dab=a dac=d dad=c dba=c dbb=d dbc=a dbd=b dca=d dcb=c dcc=b dcd=a dda=a ddb=b ddc=c ddd=d d♦1=d d♦2=d d♦3=d c'ty exterior — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:38298 identities:   ac_,   _ac,   bd_,   _bd,   ca_,   _ca,   db_,   _db skews aaa=c aab=d aac=a aad=b aba=b abb=c abc=d abd=a aca=a acb=b acc=c acd=d ada=d adb=a adc=b add=c a♦1=c a♦2=c a♦3=c baa=d bab=a bac=b bad=c bba=c bbb=d bbc=a bbd=b bca=b bcb=c bcc=d bcd=a bda=a bdb=b bdc=c bdd=d b♦1=d b♦2=d b♦3=d caa=a cab=b cac=c cad=d cba=d cbb=a cbc=b cbd=c cca=c ccb=d ccc=a ccd=b cda=b cdb=c cdc=d cdd=a c♦1=a c♦2=a c♦3=a daa=b dab=c dac=d dad=a dba=a dbb=b dbc=c dbd=d dca=d dcb=a dcc=b dcd=c dda=c ddb=d ddc=a ddd=b d♦1=b d♦2=b d♦3=b c'ty exterior — a'ty full — self-d'ty full — m'ty true — decomp sinister, dexterior all invertible

 4:38456 identities:   ac_,   c_a,   _ac,   bb_,   b_b,   _bb,   ca_,   a_c,   _ca,   dd_,   d_d,   _dd skews aaa=c aab=d aac=a aad=b aba=d abb=a abc=b abd=c aca=a acb=b acc=c acd=d ada=b adb=c adc=d add=a a♦1=c a♦2=c a♦3=c baa=d bab=a bac=b bad=c bba=a bbb=b bbc=c bbd=d bca=b bcb=c bcc=d bcd=a bda=c bdb=d bdc=a bdd=b b♦1=b b♦2=b b♦3=b caa=a cab=b cac=c cad=d cba=b cbb=c cbc=d cbd=a cca=c ccb=d ccc=a ccd=b cda=d cdb=a cdc=b cdd=c c♦1=a c♦2=a c♦3=a daa=b dab=c dac=d dad=a dba=c dbb=d dbc=a dbd=b dca=d dcb=a dcc=b dcd=c dda=a ddb=b ddc=c ddd=d d♦1=d d♦2=d d♦3=d c'ty full — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:38852 identities:   ac_,   c_a,   _ac,   bd_,   d_b,   _bd,   ca_,   a_c,   _ca,   db_,   b_d,   _db skews aaa=c aab=d aac=a aad=b aba=d abb=c abc=b abd=a aca=a acb=b acc=c acd=d ada=b adb=a adc=d add=c a♦1=c a♦2=c a♦3=c baa=d bab=c bac=b bad=a bba=c bbb=d bbc=a bbd=b bca=b bcb=a bcc=d bcd=c bda=a bdb=b bdc=c bdd=d b♦1=d b♦2=d b♦3=d caa=a cab=b cac=c cad=d cba=b cbb=a cbc=d cbd=c cca=c ccb=d ccc=a ccd=b cda=d cdb=c cdc=b cdd=a c♦1=a c♦2=a c♦3=a daa=b dab=a dac=d dad=c dba=a dbb=b dbc=c dbd=d dca=d dcb=c dcc=b dcd=a dda=c ddb=d ddc=a ddd=b d♦1=b d♦2=b d♦3=b c'ty full — a'ty full — self-d'ty full — m'ty true — decomp sinister, dexterior all invertible

 4:41470 identities:   ad_,   d_a,   _ad,   bc_,   c_b,   _bc,   cb_,   b_c,   _cb,   da_,   a_d,   _da skews aaa=c aab=d aac=b aad=a aba=d abb=c abc=a abd=b aca=b acb=a acc=d acd=c ada=a adb=b adc=c add=d a♦1=d a♦2=d a♦3=d baa=d bab=c bac=a bad=b bba=c bbb=d bbc=b bbd=a bca=a bcb=b bcc=c bcd=d bda=b bdb=a bdc=d bdd=c b♦1=c b♦2=c b♦3=c caa=b cab=a cac=d cad=c cba=a cbb=b cbc=c cbd=d cca=d ccb=c ccc=a ccd=b cda=c cdb=d cdc=b cdd=a c♦1=b c♦2=b c♦3=b daa=a dab=b dac=c dad=d dba=b dbb=a dbc=d dbd=c dca=c dcb=d dcc=b dcd=a dda=d ddb=c ddc=a ddd=b d♦1=a d♦2=a d♦3=a c'ty full — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:41474 identities:   ab_,   b_a,   _ab,   ba_,   a_b,   _ba,   cd_,   d_c,   _cd,   dc_,   c_d,   _dc skews aaa=d aab=a aac=b aad=c aba=a abb=b abc=c abd=d aca=b acb=c acc=d acd=a ada=c adb=d adc=a add=b a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bad=d bba=b bbb=c bbc=d bbd=a bca=c bcb=d bcc=a bcd=b bda=d bdb=a bdc=b bdd=c b♦1=a b♦2=a b♦3=a caa=b cab=c cac=d cad=a cba=c cbb=d cbc=a cbd=b cca=d ccb=a ccc=b ccd=c cda=a cdb=b cdc=c cdd=d c♦1=d c♦2=d c♦3=d daa=c dab=d dac=a dad=b dba=d dbb=a dbc=b dbd=c dca=a dcb=b dcc=c dcd=d dda=b ddb=c ddc=d ddd=a d♦1=c d♦2=c d♦3=c c'ty full — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:52629 identities:   ac_,   c_a,   _ac,   bd_,   d_b,   _bd,   ca_,   a_c,   _ca,   db_,   b_d,   _db skews aaa=d aab=c aac=a aad=b aba=c abb=d abc=b abd=a aca=a acb=b acc=c acd=d ada=b adb=a adc=d add=c a♦1=c a♦2=c a♦3=c baa=c bab=d bac=b bad=a bba=d bbb=c bbc=a bbd=b bca=b bcb=a bcc=d bcd=c bda=a bdb=b bdc=c bdd=d b♦1=d b♦2=d b♦3=d caa=a cab=b cac=c cad=d cba=b cbb=a cbc=d cbd=c cca=c ccb=d ccc=b ccd=a cda=d cdb=c cdc=a cdd=b c♦1=a c♦2=a c♦3=a daa=b dab=a dac=d dad=c dba=a dbb=b dbc=c dbd=d dca=d dcb=c dcc=a dcd=b dda=c ddb=d ddc=b ddd=a d♦1=b d♦2=b d♦3=b c'ty full — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:54353 identities:   ad_,   _ad,   bb_,   _bb,   cc_,   _cc,   da_,   _da skews aaa=d aab=c aac=b aad=a aba=b abb=a abc=d abd=c aca=c acb=d acc=a acd=b ada=a adb=b adc=c add=d a♦1=d a♦2=d a♦3=d baa=c bab=d bac=a bad=b bba=a bbb=b bbc=c bbd=d bca=d bcb=c bcc=b bcd=a bda=b bdb=a bdc=d bdd=c b♦1=b b♦2=b b♦3=b caa=b cab=a cac=d cad=c cba=d cbb=c cbc=b cbd=a cca=a ccb=b ccc=c ccd=d cda=c cdb=d cdc=a cdd=b c♦1=c c♦2=c c♦3=c daa=a dab=b dac=c dad=d dba=c dbb=d dbc=a dbd=b dca=b dcb=a dcc=d dcd=c dda=d ddb=c ddc=b ddd=a d♦1=a d♦2=a d♦3=a c'ty exterior — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:54511 identities:   ad_,   _ad,   bc_,   _bc,   cb_,   _cb,   da_,   _da skews aaa=d aab=c aac=b aad=a aba=b abb=d abc=a abd=c aca=c acb=a acc=d acd=b ada=a adb=b adc=c add=d a♦1=d a♦2=d a♦3=d baa=c bab=a bac=d bad=b bba=d bbb=c bbc=b bbd=a bca=a bcb=b bcc=c bcd=d bda=b bdb=d bdc=a bdd=c b♦1=c b♦2=c b♦3=c caa=b cab=d cac=a cad=c cba=a cbb=b cbc=c cbd=d cca=d ccb=c ccc=b ccd=a cda=c cdb=a cdc=d cdd=b c♦1=b c♦2=b c♦3=b daa=a dab=b dac=c dad=d dba=c dbb=a dbc=d dbd=b dca=b dcb=d dcc=a dcd=c dda=d ddb=c ddc=b ddd=a d♦1=a d♦2=a d♦3=a c'ty exterior — a'ty full — self-d'ty full — m'ty true — decomp sinister, dexterior all invertible

 4:54669 identities:   ad_,   d_a,   _ad,   bb_,   b_b,   _bb,   cc_,   c_c,   _cc,   da_,   a_d,   _da skews aaa=d aab=c aac=b aad=a aba=c abb=a abc=d abd=b aca=b acb=d acc=a acd=c ada=a adb=b adc=c add=d a♦1=d a♦2=d a♦3=d baa=c bab=a bac=d bad=b bba=a bbb=b bbc=c bbd=d bca=d bcb=c bcc=b bcd=a bda=b bdb=d bdc=a bdd=c b♦1=b b♦2=b b♦3=b caa=b cab=d cac=a cad=c cba=d cbb=c cbc=b cbd=a cca=a ccb=b ccc=c ccd=d cda=c cdb=a cdc=d cdd=b c♦1=c c♦2=c c♦3=c daa=a dab=b dac=c dad=d dba=b dbb=d dbc=a dbd=c dca=c dcb=a dcc=d dcd=b dda=d ddb=c ddc=b ddd=a d♦1=a d♦2=a d♦3=a c'ty full — a'ty full — self-d'ty none — m'ty true — decomp sinister, dexterior all invertible

 4:55295 identities:   ad_,   d_a,   _ad,   bc_,   c_b,   _bc,   cb_,   b_c,   _cb,   da_,   a_d,   _da skews aaa=d aab=c aac=b aad=a aba=c abb=d abc=a abd=b aca=b acb=a acc=d acd=c ada=a adb=b adc=c add=d a♦1=d a♦2=d a♦3=d baa=c bab=d bac=a bad=b bba=d bbb=c bbc=b bbd=a bca=a bcb=b bcc=c bcd=d bda=b bdb=a bdc=d bdd=c b♦1=c b♦2=c b♦3=c caa=b cab=a cac=d cad=c cba=a cbb=b cbc=c cbd=d cca=d ccb=c ccc=b ccd=a cda=c cdb=d cdc=a cdd=b c♦1=b c♦2=b c♦3=b daa=a dab=b dac=c dad=d dba=b dbb=a dbc=d dbd=c dca=c dcb=d dcc=a dcd=b dda=d ddb=c ddc=b ddd=a d♦1=a d♦2=a d♦3=a c'ty full — a'ty full — self-d'ty full — m'ty true — decomp sinister, dexterior all invertible

In the case of C = 5, the author's computer did not have enough speed to calculate all the operation numbers of the kind that are described in section 11; such numbers as were found are included here. As a workaround, a much simpler numbering using the character "A" ("for associative") was devised.

Whatever the number, all 36 of the fully associative operations were found and are listed below.

 5:A0 = 5:1263210 identities:   aa_,   a_a,   _aa,   be_,   e_b,   _be,   cd_,   d_c,   _cd,   dc_,   c_d,   _dc,   eb_,   b_e,   _eb skews aaa=a aab=b aac=c aad=d aae=e aba=b abb=c abc=d abd=e abe=a aca=c acb=d acc=e acd=a ace=b ada=d adb=e adc=a add=b ade=c aea=e aeb=a aec=b aed=c aee=d a♦1=a a♦2=a a♦3=a baa=b bab=c bac=d bad=e bae=a bba=c bbb=d bbc=e bbd=a bbe=b bca=d bcb=e bcc=a bcd=b bce=c bda=e bdb=a bdc=b bdd=c bde=d bea=a beb=b bec=c bed=d bee=e b♦1=e b♦2=e b♦3=e caa=c cab=d cac=e cad=a cae=b cba=d cbb=e cbc=a cbd=b cbe=c cca=e ccb=a ccc=b ccd=c cce=d cda=a cdb=b cdc=c cdd=d cde=e cea=b ceb=c cec=d ced=e cee=a c♦1=d c♦2=d c♦3=d daa=d dab=e dac=a dad=b dae=c dba=e dbb=a dbc=b dbd=c dbe=d dca=a dcb=b dcc=c dcd=d dce=e dda=b ddb=c ddc=d ddd=e dde=a dea=c deb=d dec=e ded=a dee=b d♦1=c d♦2=c d♦3=c eaa=e eab=a eac=b ead=c eae=d eba=a ebb=b ebc=c ebd=d ebe=e eca=b ecb=c ecc=d ecd=e ece=a eda=c edb=d edc=e edd=a ede=b eea=d eeb=e eec=a eed=b eee=c e♦1=b e♦2=b e♦3=b c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A1 = 5:1997442 identities:   aa_,   a_a,   _aa,   bd_,   d_b,   _bd,   ce_,   e_c,   _ce,   db_,   b_d,   _db,   ec_,   c_e,   _ec skews aaa=a aab=b aac=c aad=d aae=e aba=b abb=c abc=e abd=a abe=d aca=c acb=e acc=d acd=b ace=a ada=d adb=a adc=b add=e ade=c aea=e aeb=d aec=a aed=c aee=b a♦1=a a♦2=a a♦3=a baa=b bab=c bac=e bad=a bae=d bba=c bbb=e bbc=d bbd=b bbe=a bca=e bcb=d bcc=a bcd=c bce=b bda=a bdb=b bdc=c bdd=d bde=e bea=d beb=a bec=b bed=e bee=c b♦1=d b♦2=d b♦3=d caa=c cab=e cac=d cad=b cae=a cba=e cbb=d cbc=a cbd=c cbe=b cca=d ccb=a ccc=b ccd=e cce=c cda=b cdb=c cdc=e cdd=a cde=d cea=a ceb=b cec=c ced=d cee=e c♦1=e c♦2=e c♦3=e daa=d dab=a dac=b dad=e dae=c dba=a dbb=b dbc=c dbd=d dbe=e dca=b dcb=c dcc=e dcd=a dce=d dda=e ddb=d ddc=a ddd=c dde=b dea=c deb=e dec=d ded=b dee=a d♦1=b d♦2=b d♦3=b eaa=e eab=d eac=a ead=c eae=b eba=d ebb=a ebc=b ebd=e ebe=c eca=a ecb=b ecc=c ecd=d ece=e eda=c edb=e edc=d edd=b ede=a eea=b eeb=c eec=e eed=a eee=d e♦1=c e♦2=c e♦3=c c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A2 = 5:2465928 identities:   aa_,   a_a,   _aa,   bc_,   c_b,   _bc,   cb_,   b_c,   _cb,   de_,   e_d,   _de,   ed_,   d_e,   _ed skews aaa=a aab=b aac=c aad=d aae=e aba=b abb=d abc=a abd=e abe=c aca=c acb=a acc=e acd=b ace=d ada=d adb=e adc=b add=c ade=a aea=e aeb=c aec=d aed=a aee=b a♦1=a a♦2=a a♦3=a baa=b bab=d bac=a bad=e bae=c bba=d bbb=e bbc=b bbd=c bbe=a bca=a bcb=b bcc=c bcd=d bce=e bda=e bdb=c bdc=d bdd=a bde=b bea=c beb=a bec=e bed=b bee=d b♦1=c b♦2=c b♦3=c caa=c cab=a cac=e cad=b cae=d cba=a cbb=b cbc=c cbd=d cbe=e cca=e ccb=c ccc=d ccd=a cce=b cda=b cdb=d cdc=a cdd=e cde=c cea=d ceb=e cec=b ced=c cee=a c♦1=b c♦2=b c♦3=b daa=d dab=e dac=b dad=c dae=a dba=e dbb=c dbc=d dbd=a dbe=b dca=b dcb=d dcc=a dcd=e dce=c dda=c ddb=a ddc=e ddd=b dde=d dea=a deb=b dec=c ded=d dee=e d♦1=e d♦2=e d♦3=e eaa=e eab=c eac=d ead=a eae=b eba=c ebb=a ebc=e ebd=b ebe=d eca=d ecb=e ecc=b ecd=c ece=a eda=a edb=b edc=c edd=d ede=e eea=b eeb=d eec=a eed=e eee=c e♦1=d e♦2=d e♦3=d c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A3 = 5:3632028 identities:   aa_,   a_a,   _aa,   be_,   e_b,   _be,   cd_,   d_c,   _cd,   dc_,   c_d,   _dc,   eb_,   b_e,   _eb skews aaa=a aab=b aac=c aad=d aae=e aba=b abb=d abc=e abd=c abe=a aca=c acb=e acc=b acd=a ace=d ada=d adb=c adc=a add=e ade=b aea=e aeb=a aec=d aed=b aee=c a♦1=a a♦2=a a♦3=a baa=b bab=d bac=e bad=c bae=a bba=d bbb=c bbc=a bbd=e bbe=b bca=e bcb=a bcc=d bcd=b bce=c bda=c bdb=e bdc=b bdd=a bde=d bea=a beb=b bec=c bed=d bee=e b♦1=e b♦2=e b♦3=e caa=c cab=e cac=b cad=a cae=d cba=e cbb=a cbc=d cbd=b cbe=c cca=b ccb=d ccc=e ccd=c cce=a cda=a cdb=b cdc=c cdd=d cde=e cea=d ceb=c cec=a ced=e cee=b c♦1=d c♦2=d c♦3=d daa=d dab=c dac=a dad=e dae=b dba=c dbb=e dbc=b dbd=a dbe=d dca=a dcb=b dcc=c dcd=d dce=e dda=e ddb=a ddc=d ddd=b dde=c dea=b deb=d dec=e ded=c dee=a d♦1=c d♦2=c d♦3=c eaa=e eab=a eac=d ead=b eae=c eba=a ebb=b ebc=c ebd=d ebe=e eca=d ecb=c ecc=a ecd=e ece=b eda=b edb=d edc=e edd=c ede=a eea=c eeb=e eec=b eed=a eee=d e♦1=b e♦2=b e♦3=b c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A4 = 5:4133886 identities:   aa_,   a_a,   _aa,   bc_,   c_b,   _bc,   cb_,   b_c,   _cb,   de_,   e_d,   _de,   ed_,   d_e,   _ed skews aaa=a aab=b aac=c aad=d aae=e aba=b abb=e abc=a abd=c abe=d aca=c acb=a acc=d acd=e ace=b ada=d adb=c adc=e add=b ade=a aea=e aeb=d aec=b aed=a aee=c a♦1=a a♦2=a a♦3=a baa=b bab=e bac=a bad=c bae=d bba=e bbb=d bbc=b bbd=a bbe=c bca=a bcb=b bcc=c bcd=d bce=e bda=c bdb=a bdc=d bdd=e bde=b bea=d beb=c bec=e bed=b bee=a b♦1=c b♦2=c b♦3=c caa=c cab=a cac=d cad=e cae=b cba=a cbb=b cbc=c cbd=d cbe=e cca=d ccb=c ccc=e ccd=b cce=a cda=e cdb=d cdc=b cdd=a cde=c cea=b ceb=e cec=a ced=c cee=d c♦1=b c♦2=b c♦3=b daa=d dab=c dac=e dad=b dae=a dba=c dbb=a dbc=d dbd=e dbe=b dca=e dcb=d dcc=b dcd=a dce=c dda=b ddb=e ddc=a ddd=c dde=d dea=a deb=b dec=c ded=d dee=e d♦1=e d♦2=e d♦3=e eaa=e eab=d eac=b ead=a eae=c eba=d ebb=c ebc=e ebd=b ebe=a eca=b ecb=e ecc=a ecd=c ece=d eda=a edb=b edc=c edd=d ede=e eea=c eeb=a eec=d eed=e eee=b e♦1=d e♦2=d e♦3=d c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A5 = 5:4901088 identities:   aa_,   a_a,   _aa,   bd_,   d_b,   _bd,   ce_,   e_c,   _ce,   db_,   b_d,   _db,   ec_,   c_e,   _ec skews aaa=a aab=b aac=c aad=d aae=e aba=b abb=e abc=d abd=a abe=c aca=c acb=d acc=b acd=e ace=a ada=d adb=a adc=e add=c ade=b aea=e aeb=c aec=a aed=b aee=d a♦1=a a♦2=a a♦3=a baa=b bab=e bac=d bad=a bae=c bba=e bbb=c bbc=a bbd=b bbe=d bca=d bcb=a bcc=e bcd=c bce=b bda=a bdb=b bdc=c bdd=d bde=e bea=c beb=d bec=b bed=e bee=a b♦1=d b♦2=d b♦3=d caa=c cab=d cac=b cad=e cae=a cba=d cbb=a cbc=e cbd=c cbe=b cca=b ccb=e ccc=d ccd=a cce=c cda=e cdb=c cdc=a cdd=b cde=d cea=a ceb=b cec=c ced=d cee=e c♦1=e c♦2=e c♦3=e daa=d dab=a dac=e dad=c dae=b dba=a dbb=b dbc=c dbd=d dbe=e dca=e dcb=c dcc=a dcd=b dce=d dda=c ddb=d ddc=b ddd=e dde=a dea=b deb=e dec=d ded=a dee=c d♦1=b d♦2=b d♦3=b eaa=e eab=c eac=a ead=b eae=d eba=c ebb=d ebc=b ebd=e ebe=a eca=a ecb=b ecc=c ecd=d ece=e eda=b edb=e edc=d edd=a ede=c eea=d eeb=a eec=e eed=c eee=b e♦1=c e♦2=c e♦3=c c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A6 = 5:6386440 identities:   aa_,   _aa,   bb_,   _bb,   cc_,   _cc,   dd_,   _dd,   ee_,   _ee skews aaa=a aab=b aac=c aad=d aae=e aba=c abb=a abc=d abd=e abe=b aca=b acb=e acc=a acd=c ace=d ada=e adb=d adc=b add=a ade=c aea=d aeb=c aec=e aed=b aee=a a♦1=a a♦2=a a♦3=a baa=b bab=e bac=a bad=c bae=d bba=a bbb=b bbc=c bbd=d bbe=e bca=e bcb=d bcc=b bcd=a bce=c bda=d bdb=c bdc=e bdd=b bde=a bea=c beb=a bec=d bed=e bee=b b♦1=b b♦2=b b♦3=b caa=c cab=a cac=d cad=e cae=b cba=d cbb=c cbc=e cbd=b cbe=a cca=a ccb=b ccc=c ccd=d cce=e cda=b cdb=e cdc=a cdd=c cde=d cea=e ceb=d cec=b ced=a cee=c c♦1=c c♦2=c c♦3=c daa=d dab=c dac=e dad=b dae=a dba=e dbb=d dbc=b dbd=a dbe=c dca=c dcb=a dcc=d dcd=e dce=b dda=a ddb=b ddc=c ddd=d dde=e dea=b deb=e dec=a ded=c dee=d d♦1=d d♦2=d d♦3=d eaa=e eab=d eac=b ead=a eae=c eba=b ebb=e ebc=a ebd=c ebe=d eca=d ecb=c ecc=e ecd=b ece=a eda=c edb=a edc=d edd=e ede=b eea=a eeb=b eec=c eed=d eee=e e♦1=e e♦2=e e♦3=e c'ty exterior — a'ty full — self-d'ty full — m'ty true all invertible

 5:A7 = 5:6918922 identities:   aa_,   _aa,   bb_,   _bb,   cc_,   _cc,   dd_,   _dd,   ee_,   _ee skews aaa=a aab=b aac=c aad=d aae=e aba=c abb=a abc=e abd=b abe=d aca=b acb=d acc=a acd=e ace=c ada=e adb=c adc=d add=a ade=b aea=d aeb=e aec=b aed=c aee=a a♦1=a a♦2=a a♦3=a baa=b bab=d bac=a bad=e bae=c bba=a bbb=b bbc=c bbd=d bbe=e bca=d bcb=e bcc=b bcd=c bce=a bda=c bdb=a bdc=e bdd=b bde=d bea=e beb=c bec=d bed=a bee=b b♦1=b b♦2=b b♦3=b caa=c cab=a cac=e cad=b cae=d cba=e cbb=c cbc=d cbd=a cbe=b cca=a ccb=b ccc=c ccd=d cce=e cda=d cdb=e cdc=b cdd=c cde=a cea=b ceb=d cec=a ced=e cee=c c♦1=c c♦2=c c♦3=c daa=d dab=e dac=b dad=c dae=a dba=b dbb=d dbc=a dbd=e dbe=c dca=e dcb=c dcc=d dcd=a dce=b dda=a ddb=b ddc=c ddd=d dde=e dea=c deb=a dec=e ded=b dee=d d♦1=d d♦2=d d♦3=d eaa=e eab=c eac=d ead=a eae=b eba=d ebb=e ebc=b ebd=c ebe=a eca=c ecb=a ecc=e ecd=b ece=d eda=b edb=d edc=a edd=e ede=c eea=a eeb=b eec=c eed=d eee=e e♦1=e e♦2=e e♦3=e c'ty exterior — a'ty full — self-d'ty full — m'ty true all invertible

 5:A8 = 5:12180956 identities:   aa_,   _aa,   bb_,   _bb,   cc_,   _cc,   dd_,   _dd,   ee_,   _ee skews aaa=a aab=b aac=c aad=d aae=e aba=d abb=a abc=b abd=e abe=c aca=e acb=d acc=a acd=c ace=b ada=b adb=c adc=e add=a ade=d aea=c aeb=e aec=d aed=b aee=a a♦1=a a♦2=a a♦3=a baa=b bab=c bac=e bad=a bae=d bba=a bbb=b bbc=c bbd=d bbe=e bca=d bcb=a bcc=b bcd=e bce=c bda=c bdb=e bdc=d bdd=b bde=a bea=e beb=d bec=a bed=c bee=b b♦1=b b♦2=b b♦3=b caa=c cab=e cac=d cad=b cae=a cba=b cbb=c cbc=e cbd=a cbe=d cca=a ccb=b ccc=c ccd=d cce=e cda=e cdb=d cdc=a cdd=c cde=b cea=d ceb=a cec=b ced=e cee=c c♦1=c c♦2=c c♦3=c daa=d dab=a dac=b dad=e dae=c dba=e dbb=d dbc=a dbd=c dbe=b dca=c dcb=e dcc=d dcd=b dce=a dda=a ddb=b ddc=c ddd=d dde=e dea=b deb=c dec=e ded=a dee=d d♦1=d d♦2=d d♦3=d eaa=e eab=d eac=a ead=c eae=b eba=c ebb=e ebc=d ebd=b ebe=a eca=b ecb=c ecc=e ecd=a ece=d eda=d edb=a edc=b edd=e ede=c eea=a eeb=b eec=c eed=d eee=e e♦1=e e♦2=e e♦3=e c'ty exterior — a'ty full — self-d'ty full — m'ty true all invertible

 5:A9 = 5:13050082 identities:   aa_,   _aa,   bb_,   _bb,   cc_,   _cc,   dd_,   _dd,   ee_,   _ee skews aaa=a aab=b aac=c aad=d aae=e aba=d abb=a abc=e abd=c abe=b aca=e acb=c acc=a acd=b ace=d ada=b adb=e adc=d add=a ade=c aea=c aeb=d aec=b aed=e aee=a a♦1=a a♦2=a a♦3=a baa=b bab=e bac=d bad=a bae=c bba=a bbb=b bbc=c bbd=d bbe=e bca=c bcb=d bcc=b bcd=e bce=a bda=e bdb=c bdc=a bdd=b bde=d bea=d beb=a bec=e bed=c bee=b b♦1=b b♦2=b b♦3=b caa=c cab=d cac=b cad=e cae=a cba=e cbb=c cbc=a cbd=b cbe=d cca=a ccb=b ccc=c ccd=d cce=e cda=d cdb=a cdc=e cdd=c cde=b cea=b ceb=e cec=d ced=a cee=c c♦1=c c♦2=c c♦3=c daa=d dab=a dac=e dad=c dae=b dba=c dbb=d dbc=b dbd=e dbe=a dca=b dcb=e dcc=d dcd=a dce=c dda=a ddb=b ddc=c ddd=d dde=e dea=e deb=c dec=a ded=b dee=d d♦1=d d♦2=d d♦3=d eaa=e eab=c eac=a ead=b eae=d eba=b ebb=e ebc=d ebd=a ebe=c eca=d ecb=a ecc=e ecd=c ece=b eda=c edb=d edc=b edd=e ede=a eea=a eeb=b eec=c eed=d eee=e e♦1=e e♦2=e e♦3=e c'ty exterior — a'ty full — self-d'ty full — m'ty true all invertible

 5:A10 = 5:17998292 identities:   aa_,   _aa,   bb_,   _bb,   cc_,   _cc,   dd_,   _dd,   ee_,   _ee skews aaa=a aab=b aac=c aad=d aae=e aba=e abb=a abc=b abd=c abe=d aca=d acb=e acc=a acd=b ace=c ada=c adb=d adc=e add=a ade=b aea=b aeb=c aec=d aed=e aee=a a♦1=a a♦2=a a♦3=a baa=b bab=c bac=d bad=e bae=a bba=a bbb=b bbc=c bbd=d bbe=e bca=e bcb=a bcc=b bcd=c bce=d bda=d bdb=e bdc=a bdd=b bde=c bea=c beb=d bec=e bed=a bee=b b♦1=b b♦2=b b♦3=b caa=c cab=d cac=e cad=a cae=b cba=b cbb=c cbc=d cbd=e cbe=a cca=a ccb=b ccc=c ccd=d cce=e cda=e cdb=a cdc=b cdd=c cde=d cea=d ceb=e cec=a ced=b cee=c c♦1=c c♦2=c c♦3=c daa=d dab=e dac=a dad=b dae=c dba=c dbb=d dbc=e dbd=a dbe=b dca=b dcb=c dcc=d dcd=e dce=a dda=a ddb=b ddc=c ddd=d dde=e dea=e deb=a dec=b ded=c dee=d d♦1=d d♦2=d d♦3=d eaa=e eab=a eac=b ead=c eae=d eba=d ebb=e ebc=a ebd=b ebe=c eca=c ecb=d ecc=e ecd=a ece=b eda=b edb=c edc=d edd=e ede=a eea=a eeb=b eec=c eed=d eee=e e♦1=e e♦2=e e♦3=e c'ty exterior — a'ty full — self-d'ty full — m'ty true all invertible

 5:A11 = 5:18468178 identities:   aa_,   _aa,   bb_,   _bb,   cc_,   _cc,   dd_,   _dd,   ee_,   _ee skews aaa=a aab=b aac=c aad=d aae=e aba=e abb=a abc=d abd=b abe=c aca=d acb=c acc=a acd=e ace=b ada=c adb=e adc=b add=a ade=d aea=b aeb=d aec=e aed=c aee=a a♦1=a a♦2=a a♦3=a baa=b bab=d bac=e bad=c bae=a bba=a bbb=b bbc=c bbd=d bbe=e bca=c bcb=e bcc=b bcd=a bce=d bda=e bdb=a bdc=d bdd=b bde=c bea=d beb=c bec=a bed=e bee=b b♦1=b b♦2=b b♦3=b caa=c cab=e cac=b cad=a cae=d cba=d cbb=c cbc=a cbd=e cbe=b cca=a ccb=b ccc=c ccd=d cce=e cda=b cdb=d cdc=e cdd=c cde=a cea=e ceb=a cec=d ced=b cee=c c♦1=c c♦2=c c♦3=c daa=d dab=c dac=a dad=e dae=b dba=b dbb=d dbc=e dbd=c dbe=a dca=e dcb=a dcc=d dcd=b dce=c dda=a ddb=b ddc=c ddd=d dde=e dea=c deb=e dec=b ded=a dee=d d♦1=d d♦2=d d♦3=d eaa=e eab=a eac=d ead=b eae=c eba=c ebb=e ebc=b ebd=a ebe=d eca=b ecb=d ecc=e ecd=c ece=a eda=d edb=c edc=a edd=e ede=b eea=a eeb=b eec=c eed=d eee=e e♦1=e e♦2=e e♦3=e c'ty exterior — a'ty full — self-d'ty full — m'ty true all invertible

 5:A12 identities:   ae_,   e_a,   _ae,   bd_,   d_b,   _bd,   cc_,   c_c,   _cc,   db_,   b_d,   _db,   ea_,   a_e,   _ea skews aaa=b aab=c aac=d aad=e aae=a aba=c abb=d abc=e abd=a abe=b aca=d acb=e acc=a acd=b ace=c ada=e adb=a adc=b add=c ade=d aea=a aeb=b aec=c aed=d aee=e a♦1=e a♦2=e a♦3=e baa=c bab=d bac=e bad=a bae=b bba=d bbb=e bbc=a bbd=b bbe=c bca=e bcb=a bcc=b bcd=c bce=d bda=a bdb=b bdc=c bdd=d bde=e bea=b beb=c bec=d bed=e bee=a b♦1=d b♦2=d b♦3=d caa=d cab=e cac=a cad=b cae=c cba=e cbb=a cbc=b cbd=c cbe=d cca=a ccb=b ccc=c ccd=d cce=e cda=b cdb=c cdc=d cdd=e cde=a cea=c ceb=d cec=e ced=a cee=b c♦1=c c♦2=c c♦3=c daa=e dab=a dac=b dad=c dae=d dba=a dbb=b dbc=c dbd=d dbe=e dca=b dcb=c dcc=d dcd=e dce=a dda=c ddb=d ddc=e ddd=a dde=b dea=d deb=e dec=a ded=b dee=c d♦1=b d♦2=b d♦3=b eaa=a eab=b eac=c ead=d eae=e eba=b ebb=c ebc=d ebd=e ebe=a eca=c ecb=d ecc=e ecd=a ece=b eda=d edb=e edc=a edd=b ede=c eea=e eeb=a eec=b eed=c eee=d e♦1=a e♦2=a e♦3=a c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A14 identities:   ac_,   c_a,   _ac,   be_,   e_b,   _be,   ca_,   a_c,   _ca,   dd_,   d_d,   _dd,   eb_,   b_e,   _eb skews aaa=b aab=d aac=a aad=e aae=c aba=d abb=e abc=b abd=c abe=a aca=a acb=b acc=c acd=d ace=e ada=e adb=c adc=d add=a ade=b aea=c aeb=a aec=e aed=b aee=d a♦1=c a♦2=c a♦3=c baa=d bab=e bac=b bad=c bae=a bba=e bbb=c bbc=d bbd=a bbe=b bca=b bcb=d bcc=a bcd=e bce=c bda=c bdb=a bdc=e bdd=b bde=d bea=a beb=b bec=c bed=d bee=e b♦1=e b♦2=e b♦3=e caa=a cab=b cac=c cad=d cae=e cba=b cbb=d cbc=a cbd=e cbe=c cca=c ccb=a ccc=e ccd=b cce=d cda=d cdb=e cdc=b cdd=c cde=a cea=e ceb=c cec=d ced=a cee=b c♦1=a c♦2=a c♦3=a daa=e dab=c dac=d dad=a dae=b dba=c dbb=a dbc=e dbd=b dbe=d dca=d dcb=e dcc=b dcd=c dce=a dda=a ddb=b ddc=c ddd=d dde=e dea=b deb=d dec=a ded=e dee=c d♦1=d d♦2=d d♦3=d eaa=c eab=a eac=e ead=b eae=d eba=a ebb=b ebc=c ebd=d ebe=e eca=e ecb=c ecc=d ecd=a ece=b eda=b edb=d edc=a edd=e ede=c eea=d eeb=e eec=b eed=c eee=a e♦1=b e♦2=b e♦3=b c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A15 identities:   ae_,   e_a,   _ae,   bc_,   c_b,   _bc,   cb_,   b_c,   _cb,   dd_,   d_d,   _dd,   ea_,   a_e,   _ea skews aaa=b aab=d aac=e aad=c aae=a aba=d abb=c abc=a abd=e abe=b aca=e acb=a acc=d acd=b ace=c ada=c adb=e adc=b add=a ade=d aea=a aeb=b aec=c aed=d aee=e a♦1=e a♦2=e a♦3=e baa=d bab=c bac=a bad=e bae=b bba=c bbb=e bbc=b bbd=a bbe=d bca=a bcb=b bcc=c bcd=d bce=e bda=e bdb=a bdc=d bdd=b bde=c bea=b beb=d bec=e bed=c bee=a b♦1=c b♦2=c b♦3=c caa=e cab=a cac=d cad=b cae=c cba=a cbb=b cbc=c cbd=d cbe=e cca=d ccb=c ccc=a ccd=e cce=b cda=b cdb=d cdc=e cdd=c cde=a cea=c ceb=e cec=b ced=a cee=d c♦1=b c♦2=b c♦3=b daa=c dab=e dac=b dad=a dae=d dba=e dbb=a dbc=d dbd=b dbe=c dca=b dcb=d dcc=e dcd=c dce=a dda=a ddb=b ddc=c ddd=d dde=e dea=d deb=c dec=a ded=e dee=b d♦1=d d♦2=d d♦3=d eaa=a eab=b eac=c ead=d eae=e eba=b ebb=d ebc=e ebd=c ebe=a eca=c ecb=e ecc=b ecd=a ece=d eda=d edb=c edc=a edd=e ede=b eea=e eeb=a eec=d eed=b eee=c e♦1=a e♦2=a e♦3=a c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A16 identities:   ac_,   c_a,   _ac,   bd_,   d_b,   _bd,   ca_,   a_c,   _ca,   db_,   b_d,   _db,   ee_,   e_e,   _ee skews aaa=b aab=e aac=a aad=c aae=d aba=e abb=d abc=b abd=a abe=c aca=a acb=b acc=c acd=d ace=e ada=c adb=a adc=d add=e ade=b aea=d aeb=c aec=e aed=b aee=a a♦1=c a♦2=c a♦3=c baa=e bab=d bac=b bad=a bae=c bba=d bbb=c bbc=e bbd=b bbe=a bca=b bcb=e bcc=a bcd=c bce=d bda=a bdb=b bdc=c bdd=d bde=e bea=c beb=a bec=d bed=e bee=b b♦1=d b♦2=d b♦3=d caa=a cab=b cac=c cad=d cae=e cba=b cbb=e cbc=a cbd=c cbe=d cca=c ccb=a ccc=d ccd=e cce=b cda=d cdb=c cdc=e cdd=b cde=a cea=e ceb=d cec=b ced=a cee=c c♦1=a c♦2=a c♦3=a daa=c dab=a dac=d dad=e dae=b dba=a dbb=b dbc=c dbd=d dbe=e dca=d dcb=c dcc=e dcd=b dce=a dda=e ddb=d ddc=b ddd=a dde=c dea=b deb=e dec=a ded=c dee=d d♦1=b d♦2=b d♦3=b eaa=d eab=c eac=e ead=b eae=a eba=c ebb=a ebc=d ebd=e ebe=b eca=e ecb=d ecc=b ecd=a ece=c eda=b edb=e edc=a edd=c ede=d eea=a eeb=b eec=c eed=d eee=e e♦1=e e♦2=e e♦3=e c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A18 identities:   ab_,   b_a,   _ab,   ba_,   a_b,   _ba,   ce_,   e_c,   _ce,   dd_,   d_d,   _dd,   ec_,   c_e,   _ec skews aaa=c aab=a aac=d aad=e aae=b aba=a abb=b abc=c abd=d abe=e aca=d acb=c acc=e acd=b ace=a ada=e adb=d adc=b add=a ade=c aea=b aeb=e aec=a aed=c aee=d a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bad=d bae=e bba=b bbb=e bbc=a bbd=c bbe=d bca=c bcb=a bcc=d bcd=e bce=b bda=d bdb=c bdc=e bdd=b bde=a bea=e beb=d bec=b bed=a bee=c b♦1=a b♦2=a b♦3=a caa=d cab=c cac=e cad=b cae=a cba=c cbb=a cbc=d cbd=e cbe=b cca=e ccb=d ccc=b ccd=a cce=c cda=b cdb=e cdc=a cdd=c cde=d cea=a ceb=b cec=c ced=d cee=e c♦1=e c♦2=e c♦3=e daa=e dab=d dac=b dad=a dae=c dba=d dbb=c dbc=e dbd=b dbe=a dca=b dcb=e dcc=a dcd=c dce=d dda=a ddb=b ddc=c ddd=d dde=e dea=c deb=a dec=d ded=e dee=b d♦1=d d♦2=d d♦3=d eaa=b eab=e eac=a ead=c eae=d eba=e ebb=d ebc=b ebd=a ebe=c eca=a ecb=b ecc=c ecd=d ece=e eda=c edb=a edc=d edd=e ede=b eea=d eeb=c eec=e eed=b eee=a e♦1=c e♦2=c e♦3=c c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A19 identities:   ab_,   b_a,   _ab,   ba_,   a_b,   _ba,   cd_,   d_c,   _cd,   dc_,   c_d,   _dc,   ee_,   e_e,   _ee skews aaa=c aab=a aac=e aad=b aae=d aba=a abb=b abc=c abd=d abe=e aca=e acb=c acc=d acd=a ace=b ada=b adb=d adc=a add=e ade=c aea=d aeb=e aec=b aed=c aee=a a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bad=d bae=e bba=b bbb=d bbc=a bbd=e bbe=c bca=c bcb=a bcc=e bcd=b bce=d bda=d bdb=e bdc=b bdd=c bde=a bea=e beb=c bec=d bed=a bee=b b♦1=a b♦2=a b♦3=a caa=e cab=c cac=d cad=a cae=b cba=c cbb=a cbc=e cbd=b cbe=d cca=d ccb=e ccc=b ccd=c cce=a cda=a cdb=b cdc=c cdd=d cde=e cea=b ceb=d cec=a ced=e cee=c c♦1=d c♦2=d c♦3=d daa=b dab=d dac=a dad=e dae=c dba=d dbb=e dbc=b dbd=c dbe=a dca=a dcb=b dcc=c dcd=d dce=e dda=e ddb=c ddc=d ddd=a dde=b dea=c deb=a dec=e ded=b dee=d d♦1=c d♦2=c d♦3=c eaa=d eab=e eac=b ead=c eae=a eba=e ebb=c ebc=d ebd=a ebe=b eca=b ecb=d ecc=a ecd=e ece=c eda=c edb=a edc=e edd=b ede=d eea=a eeb=b eec=c eed=d eee=e e♦1=e e♦2=e e♦3=e c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A20 identities:   ae_,   e_a,   _ae,   bb_,   b_b,   _bb,   cd_,   d_c,   _cd,   dc_,   c_d,   _dc,   ea_,   a_e,   _ea skews aaa=c aab=d aac=b aad=e aae=a aba=d abb=a abc=e abd=c abe=b aca=b acb=e acc=d acd=a ace=c ada=e adb=c adc=a add=b ade=d aea=a aeb=b aec=c aed=d aee=e a♦1=e a♦2=e a♦3=e baa=d bab=a bac=e bad=c bae=b bba=a bbb=b bbc=c bbd=d bbe=e bca=e bcb=c bcc=a bcd=b bce=d bda=c bdb=d bdc=b bdd=e bde=a bea=b beb=e bec=d bed=a bee=c b♦1=b b♦2=b b♦3=b caa=b cab=e cac=d cad=a cae=c cba=e cbb=c cbc=a cbd=b cbe=d cca=d ccb=a ccc=e ccd=c cce=b cda=a cdb=b cdc=c cdd=d cde=e cea=c ceb=d cec=b ced=e cee=a c♦1=d c♦2=d c♦3=d daa=e dab=c dac=a dad=b dae=d dba=c dbb=d dbc=b dbd=e dbe=a dca=a dcb=b dcc=c dcd=d dce=e dda=b ddb=e ddc=d ddd=a dde=c dea=d deb=a dec=e ded=c dee=b d♦1=c d♦2=c d♦3=c eaa=a eab=b eac=c ead=d eae=e eba=b ebb=e ebc=d ebd=a ebe=c eca=c ecb=d ecc=b ecd=e ece=a eda=d edb=a edc=e edd=c ede=b eea=e eeb=c eec=a eed=b eee=d e♦1=a e♦2=a e♦3=a c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A23 identities:   ae_,   e_a,   _ae,   bc_,   c_b,   _bc,   cb_,   b_c,   _cb,   dd_,   d_d,   _dd,   ea_,   a_e,   _ea skews aaa=c aab=e aac=d aad=b aae=a aba=e abb=d abc=a abd=c abe=b aca=d acb=a acc=b acd=e ace=c ada=b adb=c adc=e add=a ade=d aea=a aeb=b aec=c aed=d aee=e a♦1=e a♦2=e a♦3=e baa=e bab=d bac=a bad=c bae=b bba=d bbb=a bbc=b bbd=e bbe=c bca=a bcb=b bcc=c bcd=d bce=e bda=c bdb=e bdc=d bdd=b bde=a bea=b beb=c bec=e bed=a bee=d b♦1=c b♦2=c b♦3=c caa=d cab=a cac=b cad=e cae=c cba=a cbb=b cbc=c cbd=d cbe=e cca=b ccb=c ccc=e ccd=a cce=d cda=e cdb=d cdc=a cdd=c cde=b cea=c ceb=e cec=d ced=b cee=a c♦1=b c♦2=b c♦3=b daa=b dab=c dac=e dad=a dae=d dba=c dbb=e dbc=d dbd=b dbe=a dca=e dcb=d dcc=a dcd=c dce=b dda=a ddb=b ddc=c ddd=d dde=e dea=d deb=a dec=b ded=e dee=c d♦1=d d♦2=d d♦3=d eaa=a eab=b eac=c ead=d eae=e eba=b ebb=c ebc=e ebd=a ebe=d eca=c ecb=e ecc=d ecd=b ece=a eda=d edb=a edc=b edd=e ede=c eea=e eeb=d eec=a eed=c eee=b e♦1=a e♦2=a e♦3=a c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A24 identities:   ab_,   b_a,   _ab,   ba_,   a_b,   _ba,   cd_,   d_c,   _cd,   dc_,   c_d,   _dc,   ee_,   e_e,   _ee skews aaa=d aab=a aac=b aad=e aae=c aba=a abb=b abc=c abd=d abe=e aca=b acb=c acc=e acd=a ace=d ada=e adb=d adc=a add=c ade=b aea=c aeb=e aec=d aed=b aee=a a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bad=d bae=e bba=b bbb=c bbc=e bbd=a bbe=d bca=c bcb=e bcc=d bcd=b bce=a bda=d bdb=a bdc=b bdd=e bde=c bea=e beb=d bec=a bed=c bee=b b♦1=a b♦2=a b♦3=a caa=b cab=c cac=e cad=a cae=d cba=c cbb=e cbc=d cbd=b cbe=a cca=e ccb=d ccc=a ccd=c cce=b cda=a cdb=b cdc=c cdd=d cde=e cea=d ceb=a cec=b ced=e cee=c c♦1=d c♦2=d c♦3=d daa=e dab=d dac=a dad=c dae=b dba=d dbb=a dbc=b dbd=e dbe=c dca=a dcb=b dcc=c dcd=d dce=e dda=c ddb=e ddc=d ddd=b dde=a dea=b deb=c dec=e ded=a dee=d d♦1=c d♦2=c d♦3=c eaa=c eab=e eac=d ead=b eae=a eba=e ebb=d ebc=a ebd=c ebe=b eca=d ecb=a ecc=b ecd=e ece=c eda=b edb=c edc=e edd=a ede=d eea=a eeb=b eec=c eed=d eee=e e♦1=e e♦2=e e♦3=e c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A25 identities:   ab_,   b_a,   _ab,   ba_,   a_b,   _ba,   cc_,   c_c,   _cc,   de_,   e_d,   _de,   ed_,   d_e,   _ed skews aaa=d aab=a aac=e aad=c aae=b aba=a abb=b abc=c abd=d abe=e aca=e acb=c acc=a acd=b ace=d ada=c adb=d adc=b add=e ade=a aea=b aeb=e aec=d aed=a aee=c a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bad=d bae=e bba=b bbb=e bbc=d bbd=a bbe=c bca=c bcb=d bcc=b bcd=e bce=a bda=d bdb=a bdc=e bdd=c bde=b bea=e beb=c bec=a bed=b bee=d b♦1=a b♦2=a b♦3=a caa=e cab=c cac=a cad=b cae=d cba=c cbb=d cbc=b cbd=e cbe=a cca=a ccb=b ccc=c ccd=d cce=e cda=b cdb=e cdc=d cdd=a cde=c cea=d ceb=a cec=e ced=c cee=b c♦1=c c♦2=c c♦3=c daa=c dab=d dac=b dad=e dae=a dba=d dbb=a dbc=e dbd=c dbe=b dca=b dcb=e dcc=d dcd=a dce=c dda=e ddb=c ddc=a ddd=b dde=d dea=a deb=b dec=c ded=d dee=e d♦1=e d♦2=e d♦3=e eaa=b eab=e eac=d ead=a eae=c eba=e ebb=c ebc=a ebd=b ebe=d eca=d ecb=a ecc=e ecd=c ece=b eda=a edb=b edc=c edd=d ede=e eea=c eeb=d eec=b eed=e eee=a e♦1=d e♦2=d e♦3=d c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A26 identities:   ac_,   c_a,   _ac,   bd_,   d_b,   _bd,   ca_,   a_c,   _ca,   db_,   b_d,   _db,   ee_,   e_e,   _ee skews aaa=d aab=c aac=a aad=e aae=b aba=c abb=e abc=b abd=a abe=d aca=a acb=b acc=c acd=d ace=e ada=e adb=a adc=d add=b ade=c aea=b aeb=d aec=e aed=c aee=a a♦1=c a♦2=c a♦3=c baa=c bab=e bac=b bad=a bae=d bba=e bbb=a bbc=d bbd=b bbe=c bca=b bcb=d bcc=e bcd=c bce=a bda=a bdb=b bdc=c bdd=d bde=e bea=d beb=c bec=a bed=e bee=b b♦1=d b♦2=d b♦3=d caa=a cab=b cac=c cad=d cae=e cba=b cbb=d cbc=e cbd=c cbe=a cca=c ccb=e ccc=b ccd=a cce=d cda=d cdb=c cdc=a cdd=e cde=b cea=e ceb=a cec=d ced=b cee=c c♦1=a c♦2=a c♦3=a daa=e dab=a dac=d dad=b dae=c dba=a dbb=b dbc=c dbd=d dbe=e dca=d dcb=c dcc=a dcd=e dce=b dda=b ddb=d ddc=e ddd=c dde=a dea=c deb=e dec=b ded=a dee=d d♦1=b d♦2=b d♦3=b eaa=b eab=d eac=e ead=c eae=a eba=d ebb=c ebc=a ebd=e ebe=b eca=e ecb=a ecc=d ecd=b ece=c eda=c edb=e edc=b edd=a ede=d eea=a eeb=b eec=c eed=d eee=e e♦1=e e♦2=e e♦3=e c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A27 identities:   ae_,   e_a,   _ae,   bb_,   b_b,   _bb,   cd_,   d_c,   _cd,   dc_,   c_d,   _dc,   ea_,   a_e,   _ea skews aaa=d aab=c aac=e aad=b aae=a aba=c abb=a abc=d abd=e abe=b aca=e acb=d acc=b acd=a ace=c ada=b adb=e adc=a add=c ade=d aea=a aeb=b aec=c aed=d aee=e a♦1=e a♦2=e a♦3=e baa=c bab=a bac=d bad=e bae=b bba=a bbb=b bbc=c bbd=d bbe=e bca=d bcb=c bcc=e bcd=b bce=a bda=e bdb=d bdc=b bdd=a bde=c bea=b beb=e bec=a bed=c bee=d b♦1=b b♦2=b b♦3=b caa=e cab=d cac=b cad=a cae=c cba=d cbb=c cbc=e cbd=b cbe=a cca=b ccb=e ccc=a ccd=c cce=d cda=a cdb=b cdc=c cdd=d cde=e cea=c ceb=a cec=d ced=e cee=b c♦1=d c♦2=d c♦3=d daa=b dab=e dac=a dad=c dae=d dba=e dbb=d dbc=b dbd=a dbe=c dca=a dcb=b dcc=c dcd=d dce=e dda=c ddb=a ddc=d ddd=e dde=b dea=d deb=c dec=e ded=b dee=a d♦1=c d♦2=c d♦3=c eaa=a eab=b eac=c ead=d eae=e eba=b ebb=e ebc=a ebd=c ebe=d eca=c ecb=a ecc=d ecd=e ece=b eda=d edb=c edc=e edd=b ede=a eea=e eeb=d eec=b eed=a eee=c e♦1=a e♦2=a e♦3=a c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A28 identities:   ac_,   c_a,   _ac,   bb_,   b_b,   _bb,   ca_,   a_c,   _ca,   de_,   e_d,   _de,   ed_,   d_e,   _ed skews aaa=d aab=e aac=a aad=b aae=c aba=e abb=a abc=b abd=c abe=d aca=a acb=b acc=c acd=d ace=e ada=b adb=c adc=d add=e ade=a aea=c aeb=d aec=e aed=a aee=b a♦1=c a♦2=c a♦3=c baa=e bab=a bac=b bad=c bae=d bba=a bbb=b bbc=c bbd=d bbe=e bca=b bcb=c bcc=d bcd=e bce=a bda=c bdb=d bdc=e bdd=a bde=b bea=d beb=e bec=a bed=b bee=c b♦1=b b♦2=b b♦3=b caa=a cab=b cac=c cad=d cae=e cba=b cbb=c cbc=d cbd=e cbe=a cca=c ccb=d ccc=e ccd=a cce=b cda=d cdb=e cdc=a cdd=b cde=c cea=e ceb=a cec=b ced=c cee=d c♦1=a c♦2=a c♦3=a daa=b dab=c dac=d dad=e dae=a dba=c dbb=d dbc=e dbd=a dbe=b dca=d dcb=e dcc=a dcd=b dce=c dda=e ddb=a ddc=b ddd=c dde=d dea=a deb=b dec=c ded=d dee=e d♦1=e d♦2=e d♦3=e eaa=c eab=d eac=e ead=a eae=b eba=d ebb=e ebc=a ebd=b ebe=c eca=e ecb=a ecc=b ecd=c ece=d eda=a edb=b edc=c edd=d ede=e eea=b eeb=c eec=d eed=e eee=a e♦1=d e♦2=d e♦3=d c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A29 identities:   ae_,   e_a,   _ae,   bd_,   d_b,   _bd,   cc_,   c_c,   _cc,   db_,   b_d,   _db,   ea_,   a_e,   _ea skews aaa=d aab=e aac=b aad=c aae=a aba=e abb=c abc=d abd=a abe=b aca=b acb=d acc=a acd=e ace=c ada=c adb=a adc=e add=b ade=d aea=a aeb=b aec=c aed=d aee=e a♦1=e a♦2=e a♦3=e baa=e bab=c bac=d bad=a bae=b bba=c bbb=a bbc=e bbd=b bbe=d bca=d bcb=e bcc=b bcd=c bce=a bda=a bdb=b bdc=c bdd=d bde=e bea=b beb=d bec=a bed=e bee=c b♦1=d b♦2=d b♦3=d caa=b cab=d cac=a cad=e cae=c cba=d cbb=e cbc=b cbd=c cbe=a cca=a ccb=b ccc=c ccd=d cce=e cda=e cdb=c cdc=d cdd=a cde=b cea=c ceb=a cec=e ced=b cee=d c♦1=c c♦2=c c♦3=c daa=c dab=a dac=e dad=b dae=d dba=a dbb=b dbc=c dbd=d dbe=e dca=e dcb=c dcc=d dcd=a dce=b dda=b ddb=d ddc=a ddd=e dde=c dea=d deb=e dec=b ded=c dee=a d♦1=b d♦2=b d♦3=b eaa=a eab=b eac=c ead=d eae=e eba=b ebb=d ebc=a ebd=e ebe=c eca=c ecb=a ecc=e ecd=b ece=d eda=d edb=e edc=b edd=c ede=a eea=e eeb=c eec=d eed=a eee=b e♦1=a e♦2=a e♦3=a c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A30 identities:   ab_,   b_a,   _ab,   ba_,   a_b,   _ba,   ce_,   e_c,   _ce,   dd_,   d_d,   _dd,   ec_,   c_e,   _ec skews aaa=e aab=a aac=b aad=c aae=d aba=a abb=b abc=c abd=d abe=e aca=b acb=c acc=d acd=e ace=a ada=c adb=d adc=e add=a ade=b aea=d aeb=e aec=a aed=b aee=c a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bad=d bae=e bba=b bbb=c bbc=d bbd=e bbe=a bca=c bcb=d bcc=e bcd=a bce=b bda=d bdb=e bdc=a bdd=b bde=c bea=e beb=a bec=b bed=c bee=d b♦1=a b♦2=a b♦3=a caa=b cab=c cac=d cad=e cae=a cba=c cbb=d cbc=e cbd=a cbe=b cca=d ccb=e ccc=a ccd=b cce=c cda=e cdb=a cdc=b cdd=c cde=d cea=a ceb=b cec=c ced=d cee=e c♦1=e c♦2=e c♦3=e daa=c dab=d dac=e dad=a dae=b dba=d dbb=e dbc=a dbd=b dbe=c dca=e dcb=a dcc=b dcd=c dce=d dda=a ddb=b ddc=c ddd=d dde=e dea=b deb=c dec=d ded=e dee=a d♦1=d d♦2=d d♦3=d eaa=d eab=e eac=a ead=b eae=c eba=e ebb=a ebc=b ebd=c ebe=d eca=a ecb=b ecc=c ecd=d ece=e eda=b edb=c edc=d edd=e ede=a eea=c eeb=d eec=e eed=a eee=b e♦1=c e♦2=c e♦3=c c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A31 identities:   ab_,   b_a,   _ab,   ba_,   a_b,   _ba,   cc_,   c_c,   _cc,   de_,   e_d,   _de,   ed_,   d_e,   _ed skews aaa=e aab=a aac=d aad=b aae=c aba=a abb=b abc=c abd=d abe=e aca=d acb=c acc=a acd=e ace=b ada=b adb=d adc=e add=c ade=a aea=c aeb=e aec=b aed=a aee=d a♦1=b a♦2=b a♦3=b baa=a bab=b bac=c bad=d bae=e bba=b bbb=d bbc=e bbd=c bbe=a bca=c bcb=e bcc=b bcd=a bce=d bda=d bdb=c bdc=a bdd=e bde=b bea=e beb=a bec=d bed=b bee=c b♦1=a b♦2=a b♦3=a caa=d cab=c cac=a cad=e cae=b cba=c cbb=e cbc=b cbd=a cbe=d cca=a ccb=b ccc=c ccd=d cce=e cda=e cdb=a cdc=d cdd=b cde=c cea=b ceb=d cec=e ced=c cee=a c♦1=c c♦2=c c♦3=c daa=b dab=d dac=e dad=c dae=a dba=d dbb=c dbc=a dbd=e dbe=b dca=e dcb=a dcc=d dcd=b dce=c dda=c ddb=e ddc=b ddd=a dde=d dea=a deb=b dec=c ded=d dee=e d♦1=e d♦2=e d♦3=e eaa=c eab=e eac=b ead=a eae=d eba=e ebb=a ebc=d ebd=b ebe=c eca=b ecb=d ecc=e ecd=c ece=a eda=a edb=b edc=c edd=d ede=e eea=d eeb=c eec=a eed=e eee=b e♦1=d e♦2=d e♦3=d c'ty full — a'ty full — self-d'ty none — m'ty true all invertible

 5:A32 identities:   ac_,   c_a,   _ac,   be_,   e_b,   _be,   ca_,   a_c,   _ca,   dd_,   d_d,   _dd,   eb_,   b_e,   _eb skews aaa=e aab=c aac=a aad=b aae=d aba=c abb=d abc=b abd=e abe=a aca=a acb=b acc=c acd=d ace=e ada=b adb=e adc=d add=a ade=c aea=d aeb=a aec=e aed=c aee=b a♦1=c a♦2=c a♦3=c baa=c bab=d bac=b bad=e bae=a bba=d bbb=a bbc=e bbd=c bbe=b bca=b bcb=e bcc=d bcd=a bce=c bda=e bdb=c bdc=a bdd=b bde=d bea=a beb=b bec=c bed=d bee=e b♦1=e b♦2=e b♦3=e caa=a cab=b cac=c cad=d cae=e cba=b cbb=e cbc=d cbd=a cbe=c cca=c ccb=d ccc=b ccd=e cce=a cda=d cdb=a cdc=e cdd=c cde=b cea=e ceb=c cec=a ced=b cee=d c♦1=a c♦2=a c♦3=a daa=b dab=e dac=d dad=a dae=c dba=e dbb=c dbc=a dbd=b dbe=d dca=d dcb=a dcc=e dcd=c dce=b dda=a ddb=b ddc=c ddd=d dde=e dea=c deb=d dec=b ded=e dee=a d♦1=d d♦2=d d♦3=d eaa=d eab=a eac=e ead=c eae=b eba=a ebb=b ebc=c ebd=d ebe=e eca=e ecb=c ecc=a ecd=b ece=d eda=c edb=d edc=b edd=e ede=a eea=b eeb=e eec=d eed=a eee=c e♦1=b e♦2=b e♦3=b c'ty full — a'ty full — self-d'ty none — m'ty true all invertible