Home.

Establishing equality of the various decompositions of mulpos7 (p, q, r, s, t, u, v) is simple in principle, but the notation is rather unwieldy.

Each step of the derivation, which involves no more than adding or removing parentheses, uses one of these identities:

mulpos5 (p, q, r, s, t) = mulpos3 (mulpos3 (p, q, r), s, t)#I
mulpos5 (p, q, r, s, t) = mulpos3 (p, mulpos3 (q, r, s), t)#II
mulpos5 (p, q, r, s, t) = mulpos3 (p, q, mulpos3 (r, s, t))#III

Usual notationConcise notationJustification
#IV mulpos5 (mulpos3 (p, q, r), s, t, u, v) ( ( p q r ) s t u v )   
mulpos3 (mulpos3 (mulpos3 (p, q, r), s, t), u, v) ( ( ( p q r ) s t ) u v ) add () to ( p q r ) s t#I
#IX mulpos3 (mulpos5 (p, q, r, s, t), u, v) ( ( p q r s t ) u v ) remove () from ( p q r )#I
mulpos3 (mulpos3 (p, mulpos3 (q, r, s), t), u, v) ( ( p ( q r s ) t ) u v ) add () to q r s#II
#V mulpos5 (p, mulpos3 (q, r, s), t, u, v) ( p ( q r s ) t u v ) remove () from ( p ( q r s ) t )#I
mulpos3 (p, mulpos3 (mulpos3 (q, r, s), t, u), v) ( p ( ( q r s ) t u ) v ) add () to ( q r s ) t u#II
#X mulpos3 (p, mulpos5 (q, r, s, t, u), v) ( p ( q r s t u ) v ) remove () from ( q r s )#I
mulpos3 (p, mulpos3 (q, mulpos3 (r, s, t), u), v) ( p ( q ( r s t ) u ) v ) add () to r s t#II
#VI mulpos5 (p, q, mulpos3 (r, s, t), u, v) ( p q ( r s t ) u v ) remove () from ( q ( r s t ) u )#II
mulpos3 (p, q, mulpos3 (mulpos3 (r, s, t), u, v)) ( p q ( ( r s t ) u v ) ) add () to ( r s t ) u v#III
#XI mulpos3 (p, q, mulpos5 (r, s, t, u, v)) ( p q ( r s t u v ) ) remove () from ( r s t )#I
mulpos3 (p, q, mulpos3 (r, mulpos3 (s, t, u), v)) ( p q ( r ( s t u ) v ) ) add () to s t u#II
#VII mulpos5 (p, q, r, mulpos3 (s, t, u), v) ( p q r ( s t u ) v ) remove () from ( r ( s t u ) v )#III
mulpos3 (p, q, mulpos3 (r, mulpos3 (s, t, u), v)) ( p q ( r ( s t u ) v ) ) add () to r ( s t u ) v#III
#XI mulpos3 (p, q, mulpos5 (r, s, t, u, v)) ( p q ( r s t u v ) ) remove () from ( s t u )#II
mulpos3 (p, q, mulpos3 (r, s, mulpos3 (t, u, v))) ( p q ( r s ( t u v ) ) ) add () to t u v#III
#VIII mulpos5 (p, q, r, s, mulpos3 (t, u, v)) ( p q r s ( t u v ) ) remove () from ( r s ( t u v ) )#III