Home page.

Below is the multiplication table for QR17s, including numerical approximations. Red cells represent squares, and blue cells antisquares.

The number 2, which appears among the products as an augend or minuend, is twice the multiplicative identity, and equals ⟨ 0, +2, 0, −2; 0, +2, 0, −2; 0, +2, 0, −2; 0, +2, 0, −2 ⟩ = 2C2 − 2C4 + 2C6 − 2C8 + 2C10 − 2C12 + 2C14 − 2C16.

C1
1.991468
C2
1.965946
C3
1.923651
C4
1.864944
C5
1.790327
C6
1.700434
C7
1.596034
C8
1.478018
C9
1.347391
C10
1.205269
C11
1.052864
C12
0.891477
C13
0.722483
C14
0.547326
C15
0.367499
C16
0.184537
C1
1.991468
2 + C2
3.965946
C1 + C3
3.915120
C2 + C4
3.830891
C3 + C5
3.713978
C4 + C6
3.565379
C5 + C7
3.386361
C6 + C8
3.178452
C7 + C9
2.943426
C8 + C10
2.683287
C9 + C11
2.400256
C10 + C12
2.096746
C11 + C13
1.775348
C12 + C14
1.438803
C13 + C15
1.089982
C14 + C16
0.731863
C15
0.367499
C1
1.991468
C2
1.965946
C1 + C3
3.915120
2 + C4
3.864944
C1 + C5
3.781795
C2 + C6
3.666380
C3 + C7
3.519686
C4 + C8
3.342962
C5 + C9
3.137718
C6 + C10
2.905704
C7 + C11
2.648899
C8 + C12
2.369495
C9 + C13
2.069875
C10 + C14
1.752595
C11 + C15
1.420363
C12 + C16
1.076013
C13
0.722483
C14C16
0.362789
C2
1.965946
C3
1.923651
C2 + C4
3.830891
C1 + C5
3.781795
2 + C6
3.700434
C1 + C7
3.587503
C2 + C8
3.443964
C3 + C9
3.271043
C4 + C10
3.070214
C5 + C11
2.843191
C6 + C12
2.591911
C7 + C13
2.318518
C8 + C14
2.025344
C9 + C15
1.714890
C10 + C16
1.389806
C11
1.052864
C12C16
0.706940
C13C15
0.354984
C3
1.923651
C4
1.864944
C3 + C5
3.713978
C2 + C6
3.666380
C1 + C7
3.587503
2 + C8
3.478018
C1 + C9
3.338860
C2 + C10
3.171215
C3 + C11
2.976516
C4 + C12
2.756421
C5 + C13
2.512810
C6 + C14
2.247760
C7 + C15
1.963533
C8 + C16
1.662555
C9
1.347391
C10C16
1.020733
C11C15
0.685365
C12C14
0.344151
C4
1.864944
C5
1.790327
C4 + C6
3.565379
C3 + C7
3.519686
C2 + C8
3.443964
C1 + C9
3.338860
2 + C10
3.205269
C1 + C11
3.044333
C2 + C12
2.857423
C3 + C13
2.646135
C4 + C14
2.412270
C5 + C15
2.157826
C6 + C16
1.884971
C7
1.596034
C8C16
1.293481
C9C15
0.979892
C10C14
0.657943
C11C13
0.330381
C5
1.790327
C6
1.700434
C5 + C7
3.386361
C4 + C8
3.342962
C3 + C9
3.271043
C2 + C10
3.171215
C1 + C11
3.044333
2 + C12
2.891477
C1 + C13
2.713952
C2 + C14
2.513272
C3 + C15
2.291150
C4 + C16
2.049481
C5
1.790327
C6C16
1.515898
C7C15
1.228535
C8C14
0.930692
C9C13
0.624908
C10C12
0.313793
C6
1.700434
C7
1.596034
C6 + C8
3.178452
C5 + C9
3.137718
C4 + C10
3.070214
C3 + C11
2.976516
C2 + C12
2.857423
C1 + C13
2.713952
2 + C14
2.547326
C1 + C15
2.358967
C2 + C16
2.150483
C3
1.923651
C4C16
1.680408
C5C15
1.422828
C6C14
1.153108
C7C13
0.873551
C8C12
0.586541
C9C11
0.294527
C7
1.596034
C8
1.478018
C7 + C9
2.943426
C6 + C10
2.905704
C5 + C11
2.843191
C4 + C12
2.756421
C3 + C13
2.646135
C2 + C14
2.513272
C1 + C15
2.358967
2 + C16
2.184537
C1
1.991468
C2C16
1.781409
C3C15
1.556152
C4C14
1.317618
C5C13
1.067843
C6C12
0.808958
C7C11
0.543170
C8C10
0.272749
C8
1.478018
C9
1.347391
C8 + C10
2.683287
C7 + C11
2.648899
C6 + C12
2.591911
C5 + C13
2.512810
C4 + C14
2.412270
C3 + C15
2.291150
C2 + C16
2.150483
C1
1.991468
2 − C16
1.815463
C1C15
1.623969
C2C14
1.418620
C3C13
1.201168
C4C12
0.973468
C5C11
0.737462
C6C10
0.495165
C7C9
0.248643
C9
1.347391
C10
1.205269
C9 + C11
2.400256
C8 + C12
2.369495
C7 + C13
2.318518
C6 + C14
2.247760
C5 + C15
2.157826
C4 + C16
2.049481
C3
1.923651
C2C16
1.781409
C1C15
1.623969
2 − C14
1.452674
C1C13
1.268985
C2C12
1.074469
C3C11
0.870787
C4C10
0.659675
C5C9
0.442935
C6C8
0.222416
C10
1.205269
C11
1.052864
C10 + C12
2.096746
C9 + C13
2.069875
C8 + C14
2.025344
C7 + C15
1.963533
C6 + C16
1.884971
C5
1.790327
C4C16
1.680408
C3C15
1.556152
C2C14
1.418620
C1C13
1.268985
2 − C12
1.108523
C1C11
0.938604
C2C10
0.760677
C3C9
0.576260
C4C8
0.386927
C5C7
0.194292
C11
1.052864
C12
0.891477
C11 + C13
1.775348
C10 + C14
1.752595
C9 + C15
1.714890
C8 + C16
1.662555
C7
1.596034
C6C16
1.515898
C5C15
1.422828
C4C14
1.317618
C3C13
1.201168
C2C12
1.074469
C1C11
0.938604
2 − C10
0.794731
C1C9
0.644077
C2C8
0.487928
C3C7
0.327617
C4C6
0.164510
C12
0.891477
C13
0.722483
C12 + C14
1.438803
C11 + C15
1.420363
C10 + C16
1.389806
C9
1.347391
C8C16
1.293481
C7C15
1.228535
C6C14
1.153108
C5C13
1.067843
C4C12
0.973468
C3C11
0.870787
C2C10
0.760677
C1C9
0.644077
2 − C8
0.521982
C1C7
0.395434
C2C6
0.265512
C3C5
0.133325
C13
0.722483
C14
0.547326
C13 + C15
1.089982
C12 + C16
1.076013
C11
1.052864
C10C16
1.020733
C9C15
0.979892
C8C14
0.930692
C7C13
0.873551
C6C12
0.808958
C5C11
0.737462
C4C10
0.659675
C3C9
0.576260
C2C8
0.487928
C1C7
0.395434
2 − C6
0.299566
C1C5
0.201142
C2C4
0.101002
C14
0.547326
C15
0.367499
C14 + C16
0.731863
C13
0.722483
C12C16
0.706940
C11C15
0.685365
C10C14
0.657943
C9C13
0.624908
C8C12
0.586541
C7C11
0.543170
C6C10
0.495165
C5C9
0.442935
C4C8
0.386927
C3C7
0.327617
C2C6
0.265512
C1C5
0.201142
2 − C4
0.135056
C1C3
0.067817
C15
0.367499
C16
0.184537
C15
0.367499
C14C16
0.362789
C13C15
0.354984
C12C14
0.344151
C11C13
0.330381
C10C12
0.313793
C9C11
0.294527
C8C10
0.272749
C7C9
0.248643
C6C8
0.222416
C5C7
0.194292
C4C6
0.164510
C3C5
0.133325
C2C4
0.101002
C1C3
0.067817
2 − C2
0.034054
C16
0.184537
C1
1.991468
C2
1.965946
C3
1.923651
C4
1.864944
C5
1.790327
C6
1.700434
C7
1.596034
C8
1.478018
C9
1.347391
C10
1.205269
C11
1.052864
C12
0.891477
C13
0.722483
C14
0.547326
C15
0.367499
C16
0.184537

the above table formatted in four parts
top left top right
bottom left bottom right

Below is an extract from the table above; it is the self-contained multiplication table for those Cn where n is even. Numerical approximations are unaffected, but the antisquares are gone.

C2 C4 C6 C8 C10 C12 C14 C16
C2 2 + C4 C2 + C6 C4 + C8 C6 + C10 C8 + C12 C10 + C14 C12 + C16 C14C16
C4 C2 + C6 2 + C8 C2 + C10 C4 + C12 C6 + C14 C8 + C16 C10C16 C12C14
C6 C4 + C8 C2 + C10 2 + C12 C2 + C14 C4 + C16 C6C16 C8C14 C10C12
C8 C6 + C10 C4 + C12 C2 + C14 2 + C16 C2C16 C4C14 C6C12 C8C10
C10 C8 + C12 C6 + C14 C4 + C16 C2C16 2 − C14 C2C12 C4C10 C6C8
C12 C10 + C14 C8 + C16 C6C16 C4C14 C2C12 2 − C10 C2C8 C4C6
C14 C12 + C16 C10C16 C8C14 C6C12 C4C10 C2C8 2 − C6 C2C4
C16 C14C16 C12C14 C10C12 C8C10 C6C8 C4C6 C2C4 2 − C2

This trigonometric identity is key to the multiplication table:

2 cos (θ) cos (φ) = cos (θ + φ) + cos (θ − φ)

which in Cn notation works out to be:

Cm Cn = Cm+n + Cmn

To complete some calculations, the following extensions of Cn notation are necessary: