Below is the multiplication table for QR17s, including numerical approximations. Red cells represent squares, and blue cells antisquares.
The number 2, which appears among the products as an augend or minuend, is twice the multiplicative identity, and equals 〈 0, +2, 0, −2; 0, +2, 0, −2; 0, +2, 0, −2; 0, +2, 0, −2 〉 = 2C2 − 2C4 + 2C6 − 2C8 + 2C10 − 2C12 + 2C14 − 2C16.
C1 1.991468 | C2 1.965946 | C3 1.923651 | C4 1.864944 | C5 1.790327 | C6 1.700434 | C7 1.596034 | C8 1.478018 | C9 1.347391 | C10 1.205269 | C11 1.052864 | C12 0.891477 | C13 0.722483 | C14 0.547326 | C15 0.367499 | C16 0.184537 | |||||||
C1 1.991468 | 2 + C2 3.965946 | C1 + C3 3.915120 | C2 + C4 3.830891 | C3 + C5 3.713978 | C4 + C6 3.565379 | C5 + C7 3.386361 | C6 + C8 3.178452 | C7 + C9 2.943426 | C8 + C10 2.683287 | C9 + C11 2.400256 | C10 + C12 2.096746 | C11 + C13 1.775348 | C12 + C14 1.438803 | C13 + C15 1.089982 | C14 + C16 0.731863 | C15 0.367499 | C1 1.991468 | |||||
C2 1.965946 | C1 + C3 3.915120 | 2 + C4 3.864944 | C1 + C5 3.781795 | C2 + C6 3.666380 | C3 + C7 3.519686 | C4 + C8 3.342962 | C5 + C9 3.137718 | C6 + C10 2.905704 | C7 + C11 2.648899 | C8 + C12 2.369495 | C9 + C13 2.069875 | C10 + C14 1.752595 | C11 + C15 1.420363 | C12 + C16 1.076013 | C13 0.722483 | C14 − C16 0.362789 | C2 1.965946 | |||||
C3 1.923651 | C2 + C4 3.830891 | C1 + C5 3.781795 | 2 + C6 3.700434 | C1 + C7 3.587503 | C2 + C8 3.443964 | C3 + C9 3.271043 | C4 + C10 3.070214 | C5 + C11 2.843191 | C6 + C12 2.591911 | C7 + C13 2.318518 | C8 + C14 2.025344 | C9 + C15 1.714890 | C10 + C16 1.389806 | C11 1.052864 | C12 − C16 0.706940 | C13 − C15 0.354984 | C3 1.923651 | |||||
C4 1.864944 | C3 + C5 3.713978 | C2 + C6 3.666380 | C1 + C7 3.587503 | 2 + C8 3.478018 | C1 + C9 3.338860 | C2 + C10 3.171215 | C3 + C11 2.976516 | C4 + C12 2.756421 | C5 + C13 2.512810 | C6 + C14 2.247760 | C7 + C15 1.963533 | C8 + C16 1.662555 | C9 1.347391 | C10 − C16 1.020733 | C11 − C15 0.685365 | C12 − C14 0.344151 | C4 1.864944 | |||||
C5 1.790327 | C4 + C6 3.565379 | C3 + C7 3.519686 | C2 + C8 3.443964 | C1 + C9 3.338860 | 2 + C10 3.205269 | C1 + C11 3.044333 | C2 + C12 2.857423 | C3 + C13 2.646135 | C4 + C14 2.412270 | C5 + C15 2.157826 | C6 + C16 1.884971 | C7 1.596034 | C8 − C16 1.293481 | C9 − C15 0.979892 | C10 − C14 0.657943 | C11 − C13 0.330381 | C5 1.790327 | |||||
C6 1.700434 | C5 + C7 3.386361 | C4 + C8 3.342962 | C3 + C9 3.271043 | C2 + C10 3.171215 | C1 + C11 3.044333 | 2 + C12 2.891477 | C1 + C13 2.713952 | C2 + C14 2.513272 | C3 + C15 2.291150 | C4 + C16 2.049481 | C5 1.790327 | C6 − C16 1.515898 | C7 − C15 1.228535 | C8 − C14 0.930692 | C9 − C13 0.624908 | C10 − C12 0.313793 | C6 1.700434 | |||||
C7 1.596034 | C6 + C8 3.178452 | C5 + C9 3.137718 | C4 + C10 3.070214 | C3 + C11 2.976516 | C2 + C12 2.857423 | C1 + C13 2.713952 | 2 + C14 2.547326 | C1 + C15 2.358967 | C2 + C16 2.150483 | C3 1.923651 | C4 − C16 1.680408 | C5 − C15 1.422828 | C6 − C14 1.153108 | C7 − C13 0.873551 | C8 − C12 0.586541 | C9 − C11 0.294527 | C7 1.596034 | |||||
C8 1.478018 | C7 + C9 2.943426 | C6 + C10 2.905704 | C5 + C11 2.843191 | C4 + C12 2.756421 | C3 + C13 2.646135 | C2 + C14 2.513272 | C1 + C15 2.358967 | 2 + C16 2.184537 | C1 1.991468 | C2 − C16 1.781409 | C3 − C15 1.556152 | C4 − C14 1.317618 | C5 − C13 1.067843 | C6 − C12 0.808958 | C7 − C11 0.543170 | C8 − C10 0.272749 | C8 1.478018 | |||||
C9 1.347391 | C8 + C10 2.683287 | C7 + C11 2.648899 | C6 + C12 2.591911 | C5 + C13 2.512810 | C4 + C14 2.412270 | C3 + C15 2.291150 | C2 + C16 2.150483 | C1 1.991468 | 2 − C16 1.815463 | C1 − C15 1.623969 | C2 − C14 1.418620 | C3 − C13 1.201168 | C4 − C12 0.973468 | C5 − C11 0.737462 | C6 − C10 0.495165 | C7 − C9 0.248643 | C9 1.347391 | |||||
C10 1.205269 | C9 + C11 2.400256 | C8 + C12 2.369495 | C7 + C13 2.318518 | C6 + C14 2.247760 | C5 + C15 2.157826 | C4 + C16 2.049481 | C3 1.923651 | C2 − C16 1.781409 | C1 − C15 1.623969 | 2 − C14 1.452674 | C1 − C13 1.268985 | C2 − C12 1.074469 | C3 − C11 0.870787 | C4 − C10 0.659675 | C5 − C9 0.442935 | C6 − C8 0.222416 | C10 1.205269 | |||||
C11 1.052864 | C10 + C12 2.096746 | C9 + C13 2.069875 | C8 + C14 2.025344 | C7 + C15 1.963533 | C6 + C16 1.884971 | C5 1.790327 | C4 − C16 1.680408 | C3 − C15 1.556152 | C2 − C14 1.418620 | C1 − C13 1.268985 | 2 − C12 1.108523 | C1 − C11 0.938604 | C2 − C10 0.760677 | C3 − C9 0.576260 | C4 − C8 0.386927 | C5 − C7 0.194292 | C11 1.052864 | |||||
C12 0.891477 | C11 + C13 1.775348 | C10 + C14 1.752595 | C9 + C15 1.714890 | C8 + C16 1.662555 | C7 1.596034 | C6 − C16 1.515898 | C5 − C15 1.422828 | C4 − C14 1.317618 | C3 − C13 1.201168 | C2 − C12 1.074469 | C1 − C11 0.938604 | 2 − C10 0.794731 | C1 − C9 0.644077 | C2 − C8 0.487928 | C3 − C7 0.327617 | C4 − C6 0.164510 | C12 0.891477 | |||||
C13 0.722483 | C12 + C14 1.438803 | C11 + C15 1.420363 | C10 + C16 1.389806 | C9 1.347391 | C8 − C16 1.293481 | C7 − C15 1.228535 | C6 − C14 1.153108 | C5 − C13 1.067843 | C4 − C12 0.973468 | C3 − C11 0.870787 | C2 − C10 0.760677 | C1 − C9 0.644077 | 2 − C8 0.521982 | C1 − C7 0.395434 | C2 − C6 0.265512 | C3 − C5 0.133325 | C13 0.722483 | |||||
C14 0.547326 | C13 + C15 1.089982 | C12 + C16 1.076013 | C11 1.052864 | C10 − C16 1.020733 | C9 − C15 0.979892 | C8 − C14 0.930692 | C7 − C13 0.873551 | C6 − C12 0.808958 | C5 − C11 0.737462 | C4 − C10 0.659675 | C3 − C9 0.576260 | C2 − C8 0.487928 | C1 − C7 0.395434 | 2 − C6 0.299566 | C1 − C5 0.201142 | C2 − C4 0.101002 | C14 0.547326 | |||||
C15 0.367499 | C14 + C16 0.731863 | C13 0.722483 | C12 − C16 0.706940 | C11 − C15 0.685365 | C10 − C14 0.657943 | C9 − C13 0.624908 | C8 − C12 0.586541 | C7 − C11 0.543170 | C6 − C10 0.495165 | C5 − C9 0.442935 | C4 − C8 0.386927 | C3 − C7 0.327617 | C2 − C6 0.265512 | C1 − C5 0.201142 | 2 − C4 0.135056 | C1 − C3 0.067817 | C15 0.367499 | |||||
C16 0.184537 | C15 0.367499 | C14 − C16 0.362789 | C13 − C15 0.354984 | C12 − C14 0.344151 | C11 − C13 0.330381 | C10 − C12 0.313793 | C9 − C11 0.294527 | C8 − C10 0.272749 | C7 − C9 0.248643 | C6 − C8 0.222416 | C5 − C7 0.194292 | C4 − C6 0.164510 | C3 − C5 0.133325 | C2 − C4 0.101002 | C1 − C3 0.067817 | 2 − C2 0.034054 | C16 0.184537 | |||||
C1 1.991468 | C2 1.965946 | C3 1.923651 | C4 1.864944 | C5 1.790327 | C6 1.700434 | C7 1.596034 | C8 1.478018 | C9 1.347391 | C10 1.205269 | C11 1.052864 | C12 0.891477 | C13 0.722483 | C14 0.547326 | C15 0.367499 | C16 0.184537 |
the above table formatted in four parts | |
---|---|
top left | top right |
bottom left | bottom right |
Below is an extract from the table above; it is the self-contained multiplication table for those Cn where n is even. Numerical approximations are unaffected, but the antisquares are gone.
C2 | C4 | C6 | C8 | C10 | C12 | C14 | C16 | |||
C2 | 2 + C4 | C2 + C6 | C4 + C8 | C6 + C10 | C8 + C12 | C10 + C14 | C12 + C16 | C14 − C16 | ||
C4 | C2 + C6 | 2 + C8 | C2 + C10 | C4 + C12 | C6 + C14 | C8 + C16 | C10 − C16 | C12 − C14 | ||
C6 | C4 + C8 | C2 + C10 | 2 + C12 | C2 + C14 | C4 + C16 | C6 − C16 | C8 − C14 | C10 − C12 | ||
C8 | C6 + C10 | C4 + C12 | C2 + C14 | 2 + C16 | C2 − C16 | C4 − C14 | C6 − C12 | C8 − C10 | ||
C10 | C8 + C12 | C6 + C14 | C4 + C16 | C2 − C16 | 2 − C14 | C2 − C12 | C4 − C10 | C6 − C8 | ||
C12 | C10 + C14 | C8 + C16 | C6 − C16 | C4 − C14 | C2 − C12 | 2 − C10 | C2 − C8 | C4 − C6 | ||
C14 | C12 + C16 | C10 − C16 | C8 − C14 | C6 − C12 | C4 − C10 | C2 − C8 | 2 − C6 | C2 − C4 | ||
C16 | C14 − C16 | C12 − C14 | C10 − C12 | C8 − C10 | C6 − C8 | C4 − C6 | C2 − C4 | 2 − C2 |
This trigonometric identity is key to the multiplication table:
2 cos (θ) cos (φ) = cos (θ + φ) + cos (θ − φ)
which in Cn notation works out to be:
Cm Cn = Cm+n + Cm−n
To complete some calculations, the following extensions of Cn notation are necessary: