Home Page.
Related Page.

Complex licht multiplication example with various gons.


With multiplication, the gon(s) of the output may or may not equal the gons of the inputs; what follows is an example using 5-lichts. Numerous preliminary definitions are necessary to present in a clear manner the final pattern, which turns out to be a Latin square.


To establish the divisors, define two ordered quintuples, which came from a random number generator:

A𝗗 = ( [−2.157831, +2.036379],[−1.613613, −0.530356],[+1.266265, +0.314028],
[+1.609747, +0.060905],[+2.574440, +2.426379])
B𝗗 = ( [−0.310587, +0.642595],[+1.938439, +1.503547],[−0.865090, −0.358493],
[+0.062550, +1.217095],[+0.185946, −1.706754])

whence a third:

C𝗗 = A𝗗 × B𝗗 = ( [−0.638373, −2.019083],[−2.330475, −3.454207],[−0.982857, −0.725609],
[+0.026562, +1.963024][+4.619939, −3.942761])


To establish the lengths, define two complex numbers:

A𝗟0 = [−0.447087, +2.276521]
B𝗟0 = [+0.982247, −1.109308]

whence a third:

C𝗟0 = A𝗟0 × B𝗟0 = [+2.086212, +2.732064]

Using those, define fifteen ordered quintuples:

A0𝗟 = ( A𝗟0,[+1.415754, −0.775016],[−1.501595, +1.261835],
[−2.111657, +2.273926],[−2.934627, +2.683005])
A1𝗟 = ( A𝗟0,[+1.174576, +1.106969],[+0.473128, −1.903461],
[+3.044946, −0.598444],[+1.644840, +3.620090])
A2𝗟 = ( A𝗟0,[−0.689826, +1.459160],[+0.736058, +1.818030],
[−2.815170, −1.305623],[+3.951194, −0.445667])
A3𝗟 = ( A𝗟0,[−1.600912, −0.205158],[−1.664095, −1.038173],
[+1.510094, +2.710987],[+0.797132, −3.895527])
A4𝗟 = ( A𝗟0,[−0.299592, −1.585955],[+1.956504, −0.138231],
[+0.371786, −3.080845],[−3.458539, −1.961902])

B0𝗟 = ( B𝗟0,[−0.111076, −2.654123],[+0.727699, −1.179138],
[−1.870319, +0.294643],[−1.814216, +0.812855])
B1𝗟 = ( B𝗟0,[+2.489897, −0.925809],[+0.104359, +1.381673],
[+1.686307, +0.860975],[+0.212447, +1.976608])
B2𝗟 = ( B𝗟0,[+1.649917, +2.081942],[−0.896556, −1.056456],
[−0.858182, −1.687729],[+1.945515, +0.408756])
B3𝗟 = ( B𝗟0,[−1.470192, +2.212520],[+1.346298, +0.327709],
[−0.297738, +1.869829],[+0.989947, −1.723983])
B4𝗟 = ( B𝗟0,[−2.558546, −0.714530],[−1.281801, +0.526212],
[+1.339933, −1.337717],[−1.333694, −1.474236])

C0𝗟 = ( C𝗟0,[−4.176042, +0.971315], [+1.260752, −2.407579],
[+0.212390, +5.871708],[+7.869277, +0.748023])
C1𝗟 = ( C𝗟0,[−2.214243, −3.671499], [+0.395169, +2.688824],
[+3.279476, −4.875151],[+3.143152, −7.252976])
C2𝗟 = ( C𝗟0,[+2.807564, −3.240426], [−1.900150, −1.943029],
[−5.518694, +2.016452],[−5.926702, −5.230608])
C3𝗟 = ( C𝗟0,[+3.949414, +1.668805], [+2.679337, +0.455064],
[+5.649958, +1.612463],[−6.806056, +4.020282])
C4𝗟 = ( C𝗟0,[−0.366692, +4.271805], [−2.435109, +1.206721],
[−3.623130, −4.625472],[+1.720328, +7.715279])


Now can be defined fifteen lichts:

A0 = ⟨ A𝗗; A0𝗟; 0 ⟩
A1 = ⟨ A𝗗; A1𝗟; 1 ⟩
A2 = ⟨ A𝗗; A2𝗟; 2 ⟩
A3 = ⟨ A𝗗; A3𝗟; 3 ⟩
A4 = ⟨ A𝗗; A4𝗟; 4 ⟩
B0 = ⟨ B𝗗; B0𝗟; 0 ⟩
B1 = ⟨ B𝗗; B1𝗟; 1 ⟩
B2 = ⟨ B𝗗; B2𝗟; 2 ⟩
B3 = ⟨ B𝗗; B3𝗟; 3 ⟩
B4 = ⟨ B𝗗; B4𝗟; 4 ⟩
C0 = ⟨ C𝗗; C0𝗟; 0 ⟩
C1 = ⟨ C𝗗; C1𝗟; 1 ⟩
C2 = ⟨ C𝗗; C2𝗟; 2 ⟩
C3 = ⟨ C𝗗; C3𝗟; 3 ⟩
C4 = ⟨ C𝗗; C4𝗟; 4 ⟩

which lead to twenty-five products:

A0 × B0 = C1 A0 × B1 = C2 A0 × B2 = C3 A0 × B3 = C4 A0 × B4 = C0
A1 × B0 = C2 A1 × B1 = C3 A1 × B2 = C4 A1 × B3 = C0 A1 × B4 = C1
A2 × B0 = C3 A2 × B1 = C4 A2 × B2 = C0 A2 × B3 = C1 A2 × B4 = C2
A3 × B0 = C4 A3 × B1 = C0 A3 × B2 = C1 A3 × B3 = C2 A3 × B4 = C3
A4 × B0 = C0 A4 × B1 = C1 A4 × B2 = C2 A4 × B3 = C3 A4 × B4 = C4

The subscripts of the Cs, which are the lichts' respective gon numbers, form a Latin square:

 1   2   3   4   0 
23401
34012
40123
01234

Yet unknown is whether Latin squares are always formed in the general nonzero case.