A catalog of convex deciphis.
Version of Friday 27 August 2021.
Dave Barber's other pages.

This report looks at a class of polygons meeting these criteria:

Such a figure we call a deciphi, from deci- (36° being one-tenth of a circle) and -phi (Greek letter φ denoting the golden ratio). A deciphi can be categorized as:

The obtuse deciphis form a subset of the convex, and the convex form a subset of the proper. Propriety is introduced to limit the figures to "plain old" polygons.

The side-length ratio φ and the 36° angle go hand in hand, as illustrated by the following two well-known triangles:

The area of the larger triangle (0.769421) is φ times the area of the smaller (0.475528).


While the non-convex deciphis are infinite in number, there are precisely 98 convex deciphis, listed in the table below. Each of these figures is assigned an arbitrary three-digit model number for convenience of reference, and all are drawn to the same scale.

If a polygon has axes of reflective symmetry, one of them is drawn vertically to make the symmetry more obvious. Polygons lacking an axis of symmetry form mirror-image pairs which are drawn in the same compartment of a table. Their model numbers can be notated with a double-ended arrow, for instance 406 ↔ 407.

Below each polygon is given its area in terms of a = ½ cos 18° and b = ½ cos 54°. This a & b notation also aids in determining how a larger convex deciphi might (or might not) be partitionable into smaller convex deciphis. Below each area is then given the polygon's perimeter. There are important even-odd relationships among these:

areaperimeternumber
of sides
coefficient
of a
coefficient
of b
integercoefficient
of φ
eveneveneveneveneven
evenoddoddoddeven
oddoddoddevenodd
oddevenevenoddodd

Equilateral polygons are shown on a yellow background; there are seven in each of the two side lengths.

A diagonal of a polygon is shown if the angle it forms with an edge is a multiple of 36°. The length of such a diagonal equals an integer added to an integral power of φ. The lengths of other diagonals are not easy to characterize.

Two elementary properties of n-gons when n is even:

Neither converse is always true, however, as demonstrated by 10-gon #102.

Tiles can be manufactured in these shapes as an educational toy. Few sets would include all 98 polygons; the youngest children might benefit from a set limited to equilateral polygons.

3-gons
one axis of reflective symmetry:
a
2 + φ
a + b
1 + 2φ
same sequence of angles: none same sequence of sides: none
4-gons
180° rotative symmetry,
two axes of reflective symmetry:
2b
4
2a + 2b
2a
4
4a + 2b
one axis of reflective symmetry:
2a + 2b
2 + 2φ
2a + b
3 + φ
180° rotative symmetry:
2a
2 + 2φ
2a + 2b
2 + 2φ
same sequence of angles:
  • 400, 401, 406, 407
  • 402, 403, 408, 409
same sequence of sides:
  • 400, 402
  • 401, 403
  • 406, 407, 408, 409
same both:
  • 406, 407
  • 408, 409
5-gons
72° rotative symmetry,
five axes of reflective symmetry:
3a + b
5
7a + 4b
one axis of reflective symmetry:
3a + 3b
3 + 2φ
no symmetry:
3a + 2b
4 + 1φ
5a + 2b
2 + 3φ
3a + 3b
3 + 2φ
5a + 3b
1 + 4φ
same sequence of angles:
  • 500, 501
  • 503, 505
  • 504, 506
  • 507, 509
  • 508, 510
same sequence of sides:
  • 503, 504
  • 505, 506
  • 507, 508
  • 509, 510
6-gons
180° rotative symmetry,
two axes of reflective symmetry:
4a + 2b
6
4a + 6b
4 + 2φ
6a + 6b
2 + 4φ
10a + 6b
2a + 4b
6
6a
4 + 2φ
8a + 2b
2 + 4φ
8a + 6b
one axis of reflective symmetry:
6a + 2b
4 + 2φ
6a + 6b
2 + 4φ
8a + 4b
2 + 4φ
4a + 4b
4 + 2φ
6a + 5b
3 + 3φ
180° rotative symmetry:
6a + 2b
4 + 2φ
8a + 4b
2 + 4φ
4a + 4b
4 + 2φ
6a + 4b
2 + 4φ
no symmetry:
4a + 3b
5 + 1φ
6a + 3b
3 + 3φ
same sequence of angles:
  • 600, 601, 602, 603, 613, 614, 615, 616
  • 604, 605, 606, 607, 617, 618, 619, 620
  • 608, 609
  • 621, 623
  • 622, 624
same sequence of sides:
  • 600, 604
  • 601, 605, 613, 614, 617, 618
  • 602, 606, 615, 616, 619, 620
  • 603, 607
  • 608, 611
  • 609, 610
  • 621, 622
same both:
  • 601, 613, 614
  • 602, 615, 616
  • 605, 617, 618
  • 606, 619, 620
7-gons
one axis of reflective symmetry:
5a + 6b
6 + 1φ
7a + 5b
5 + 2φ
9a + 4b
4 + 3φ
11a + 6b
2 + 5φ
13a + 7b
1 + 6φ
no symmetry:
7a + 5b
5 + 2φ
9a + 7b
3 + 4φ
9a + 7b
3 + 4φ
9a + 4b
4 + 3φ
same sequence of angles:
  • 700, 703, 711, 712
  • 701, 702, 704, 709, 710
  • 705, 707
  • 706, 708
same sequence of sides:
  • 705, 706
  • 707, 708
  • 709, 710
same both:
  • 709, 710
8-gons
180° rotative symmetry,
two axes of reflective symmetry:
6a + 6b
8
12a + 6b
4 + 4φ
12a + 8b
4 + 4φ
18a + 12b
one axis of reflective symmetry:
8a + 8b
6 + 2φ
12a + 8b
4 + 4φ
8a + 5b
7 + φ
14a + 7b
3 + 5φ
12a + 8b
4 + 4φ
16a + 8b
2 + 6φ
180° rotative symmetry:
8a + 8b
6 + 2φ
10a + 4b
6 + 2φ
10a + 10b
4 + 4φ
14a + 4b
4 + 4φ
16a + 8b
2 + 6φ
14a + 10b
2 + 6φ
no symmetry:
10a + 7b
5 + 3φ
same sequence of angles:
  • 800, 801, 802, 803, 810, 811, 812, 813,
    814, 815, 816, 817, 818, 819, 820, 821
  • 804, 805
  • 806, 807, 808, 809, 822, 823
same sequence of sides:
  • 801, 802, 814, 815
  • 810, 811, 812, 813
  • 816, 817
  • 818, 819, 820, 821
same both:
  • 801, 802, 814, 815
  • 810, 811, 812, 813
  • 816, 817
  • 818, 819, 820, 821
9-gons
one axis of reflective symmetry:
11a + 9b
7 + 2φ
17a + 13b
3 + 6φ
no symmetry:
15a + 9b
5 + 4φ
same sequence of angles: all same sequence of sides: none
10-gons
To save space, the prefix for the model number is 1- and not 10-.
36° rotative symmetry,
ten axes of reflective symmetry:
10a + 10b
10
30a + 20b
10φ
72° rotative symmetry,
five axes of reflective symmetry:
22a + 9b
5 + 5φ
180° rotative symmetry,
two axes of reflective symmetry:
14a + 10b
8 + 2φ
20a + 8b
6 + 4φ
16a + 14b
6 + 4φ
26a + 16b
2 + 8φ
24a + 10b
4 + 6φ
20a + 16b
4 + 6φ
same sequence of angles: all same sequence of sides: none

The polygons can be sorted by area:

approxexactpolygons
0.47553 a 300
0.58779 2b400
0.76942 a + b301
0.951062a 402, 406 ↔ 407
1.244952a + b405
1.538842a + 2b401, 404, 408 ↔ 409
1.720483a + b500
2.014373a + 2b503 ↔ 504
2.126632a + 4b604
2.308263a + 3b502, 507 ↔ 508
2.489904a + 2b403, 600
2.783794a + 3b621 ↔ 622
2.853176a 605
2.965435a + 2b505 ↔ 506
3.077684a + 4b611, 617 ↔ 618
3.259325a + 3b509 ↔ 510
3.440956a + 2b608, 613 ↔ 614
3.665474a + 6b601
3.734856a + 3b623 ↔ 624
 
approxexactpolygons
4.028746a + 4b619 ↔ 620
4.141005a + 6b700
4.322636a + 5b612
4.392018a + 2b606
4.504277a + 4b501
4.616536a + 6b602, 609, 800
4.798167a + 5b701, 705 ↔ 706
4.979808a + 4b610, 615 ↔ 616
5.273698a + 5b806
5.455329a + 4b702, 711 ↔ 712
5.567588a + 6b607
5.9308510a + 4b812 ↔ 813
6.155378a + 8b804, 810 ↔ 811
6.337009a + 7b707 ↔ 708, 709 ↔ 710
6.5186410a + 6b603
6.8125310a + 7b822 ↔ 823
6.9941711a + 6b703
 
approxexactpolygons
7.4696912a + 6b801
7.6942110a + 10b814 ↔ 815, 100
7.8329714a + 4b816 ↔ 817
7.8758411a + 9b900
8.0574812a + 8b802, 805, 808
8.2391213a + 7b704
8.7146414a + 7b807
9.5963214a + 10b820 ↔ 821, 103
9.7779615a + 9b902 ↔ 903
9.9595916a + 8b809, 818 ↔ 819
11.7229516a + 14b105
11.8617120a + 8b104
11.9045817a + 13b901
12.0862218a + 12b803
13.1066622a + 9b102
14.2128520a + 16b108
14.3516024a + 10b107
17.0660226a + 16b106
20.1437030a + 20b101

Here is a sample tessellation:

Related are the penrose tilings, which were developed in a search for aperiodic tessellations.

A related discussion.