The obtuse deciphis form a subset of the convex, and the convex form a subset of the proper. Propriety is introduced to limit the figures to "plain old" polygons.
The side-length ratio φ and the 36° angle go hand in hand, as illustrated by the following two well-known triangles:
The area of the larger triangle (0.769421) is φ times the area of the smaller (0.475528).
While the non-convex deciphis are infinite in number, there are precisely 98 convex deciphis, listed in the table below. Each of these figures is assigned an arbitrary three-digit model number for convenience of reference, and all are drawn to the same scale.
If a polygon has axes of reflective symmetry, one of them is drawn vertically to make the symmetry more obvious. Polygons lacking an axis of symmetry form mirror-image pairs which are drawn in the same compartment of a table. Their model numbers can be notated with a double-ended arrow, for instance 406 ↔ 407.
Equilateral polygons are shown on a yellow background; there are seven in each of the two side lengths.
A diagonal of a polygon is shown if the angle it forms with an edge is a multiple of 36°. The length of such a diagonal equals an integer added to an integral power of φ. The lengths of other diagonals are not easy to characterize.
Tiles can be manufactured in these shapes as an educational toy. Few sets would include all 98 polygons; the youngest children might benefit from a set limited to equilateral polygons.
3-gons |
one axis of reflective symmetry:
|
|
|
a 2 + φ
| a + b 1 + 2φ
|
|
same sequence of angles: none
| same sequence of sides: none
|
|
|
---|
4-gons |
180° rotative symmetry, two axes of reflective symmetry:
|
|
|
|
|
2b 4
| 2a + 2b 4φ
| 2a 4
| 4a + 2b 4φ
|
| one axis of reflective symmetry:
|
|
|
2a + 2b 2 + 2φ
| 2a + b 3 + φ
|
| 180° rotative symmetry:
|
|
same sequence of angles:
- 400, 401, 406, 407
- 402, 403, 408, 409
| same sequence of sides:
- 400, 402
- 401, 403
- 406, 407, 408, 409
| same both:
|
|
|
---|
5-gons |
72° rotative symmetry, five axes of reflective symmetry:
|
|
|
3a + b 5
| 7a + 4b 5φ
|
| one axis of reflective symmetry: |
|
3a + 3b 3 + 2φ
|
| no symmetry:
|

| 
|
3a + 2b 4 + 1φ
| 5a + 2b 2 + 3φ
|

| 
|
3a + 3b 3 + 2φ
| 5a + 3b 1 + 4φ
|
|
same sequence of angles:
- 500, 501
- 503, 505
- 504, 506
- 507, 509
- 508, 510
| same sequence of sides:
- 503, 504
- 505, 506
- 507, 508
- 509, 510
|
|
|
---|
6-gons |
180° rotative symmetry, two axes of reflective symmetry:
|
|
|
|
|
4a + 2b 6
| 4a + 6b 4 + 2φ
| 6a + 6b 2 + 4φ
| 10a + 6b 6φ
|
|
|
|
|
2a + 4b 6
| 6a 4 + 2φ
| 8a + 2b 2 + 4φ
| 8a + 6b 6φ
|
| one axis of reflective symmetry:
|
|
|
|
|
|
6a + 2b 4 + 2φ
| 6a + 6b 2 + 4φ
| 8a + 4b 2 + 4φ
| 4a + 4b 4 + 2φ
| 6a + 5b 3 + 3φ
|
| 180° rotative symmetry:
|

| 
|
6a + 2b 4 + 2φ
| 8a + 4b 2 + 4φ
|

| 
|
4a + 4b 4 + 2φ
| 6a + 4b 2 + 4φ
|
| no symmetry:
|

| 
|
4a + 3b 5 + 1φ
| 6a + 3b 3 + 3φ
|
|
same sequence of angles:
- 600, 601, 602, 603, 613, 614, 615, 616
- 604, 605, 606, 607, 617, 618, 619, 620
- 608, 609
- 621, 623
- 622, 624
| same sequence of sides:
- 600, 604
- 601, 605, 613, 614, 617, 618
- 602, 606, 615, 616, 619, 620
- 603, 607
- 608, 611
- 609, 610
- 621, 622
| same both:
- 601, 613, 614
- 602, 615, 616
- 605, 617, 618
- 606, 619, 620
|
|
|
---|
7-gons |
one axis of reflective symmetry:
|
|
|
|
|
|
5a + 6b 6 + 1φ
| 7a + 5b 5 + 2φ
| 9a + 4b 4 + 3φ
| 11a + 6b 2 + 5φ
| 13a + 7b 1 + 6φ
|
| no symmetry:
|

| 
|
7a + 5b 5 + 2φ
| 9a + 7b 3 + 4φ
|

| 
|
9a + 7b 3 + 4φ
| 9a + 4b 4 + 3φ
|
|
same sequence of angles:
- 700, 703, 711, 712
- 701, 702, 704, 709, 710
- 705, 707
- 706, 708
| same sequence of sides:
- 705, 706
- 707, 708
- 709, 710
| same both:
|
|
|
---|
8-gons |
180° rotative symmetry, two axes of reflective symmetry:
|
|
|
|
|
6a + 6b 8
| 12a + 6b 4 + 4φ
| 12a + 8b 4 + 4φ
| 18a + 12b 8φ
|
| one axis of reflective symmetry: |
|
|
|
8a + 8b 6 + 2φ
| 12a + 8b 4 + 4φ
| 8a + 5b 7 + φ
|
|
|
|
14a + 7b 3 + 5φ
| 12a + 8b 4 + 4φ
| 16a + 8b 2 + 6φ
|
| 180° rotative symmetry: |

| 
|
8a + 8b 6 + 2φ
| 10a + 4b 6 + 2φ
|

| 
|
10a + 10b 4 + 4φ
| 14a + 4b 4 + 4φ
|

| 
|
16a + 8b 2 + 6φ
| 14a + 10b 2 + 6φ
|
| no symmetry: |

|
10a + 7b 5 + 3φ
|
|
same sequence of angles:
- 800, 801, 802, 803, 810, 811, 812, 813,
814, 815, 816, 817, 818, 819, 820, 821
- 804, 805
- 806, 807, 808, 809, 822, 823
| same sequence of sides:
- 801, 802, 814, 815
- 810, 811, 812, 813
- 816, 817
- 818, 819, 820, 821
| same both:
- 801, 802, 814, 815
- 810, 811, 812, 813
- 816, 817
- 818, 819, 820, 821
|
|
|
---|
9-gons |
one axis of reflective symmetry:
|
|
|
11a + 9b 7 + 2φ
| 17a + 13b 3 + 6φ
|
| no symmetry: |

|
15a + 9b 5 + 4φ
|
|
same sequence of angles: all
| same sequence of sides: none
|
|
|
---|
10-gons |
To save space, the prefix for the model number is 1- and not 10-.
| 36° rotative symmetry, ten axes of reflective symmetry:
|
|
|
10a + 10b 10
| 30a + 20b 10φ
|
| 72° rotative symmetry, five axes of reflective symmetry:
|
|
22a + 9b 5 + 5φ
|
| 180° rotative symmetry, two axes of reflective symmetry:
|
|
|
|
14a + 10b 8 + 2φ
| 20a + 8b 6 + 4φ
| 16a + 14b 6 + 4φ
|
|
|
|
26a + 16b 2 + 8φ
| 24a + 10b 4 + 6φ
| 20a + 16b 4 + 6φ
|
|
same sequence of angles: all
| same sequence of sides: none
|
|
|
---|
approx | exact | polygons
|
---|
0.47553 | a | 300
| 0.58779 | 2b | 400
| 0.76942 | a + b | 301
| 0.95106 | 2a | 402, 406 ↔ 407
| 1.24495 | 2a + b | 405
| 1.53884 | 2a + 2b | 401, 404, 408 ↔ 409
| 1.72048 | 3a + b | 500
| 2.01437 | 3a + 2b | 503 ↔ 504
| 2.12663 | 2a + 4b | 604
| 2.30826 | 3a + 3b | 502, 507 ↔ 508
| 2.48990 | 4a + 2b | 403, 600
| 2.78379 | 4a + 3b | 621 ↔ 622
| 2.85317 | 6a | 605
| 2.96543 | 5a + 2b | 505 ↔ 506
| 3.07768 | 4a + 4b | 611, 617 ↔ 618
| 3.25932 | 5a + 3b | 509 ↔ 510
| 3.44095 | 6a + 2b | 608, 613 ↔ 614
| 3.66547 | 4a + 6b | 601
| 3.73485 | 6a + 3b | 623 ↔ 624
|
|
|
approx | exact | polygons
|
---|
4.02874 | 6a + 4b | 619 ↔ 620
| 4.14100 | 5a + 6b | 700
| 4.32263 | 6a + 5b | 612
| 4.39201 | 8a + 2b | 606
| 4.50427 | 7a + 4b | 501
| 4.61653 | 6a + 6b | 602, 609, 800
| 4.79816 | 7a + 5b | 701, 705 ↔ 706
| 4.97980 | 8a + 4b | 610, 615 ↔ 616
| 5.27369 | 8a + 5b | 806
| 5.45532 | 9a + 4b | 702, 711 ↔ 712
| 5.56758 | 8a + 6b | 607
| 5.93085 | 10a + 4b | 812 ↔ 813
| 6.15537 | 8a + 8b | 804, 810 ↔ 811
| 6.33700 | 9a + 7b | 707 ↔ 708, 709 ↔ 710
| 6.51864 | 10a + 6b | 603
| 6.81253 | 10a + 7b | 822 ↔ 823
| 6.99417 | 11a + 6b | 703
|
|
|
approx | exact | polygons
|
---|
7.46969 | 12a + 6b | 801
| 7.69421 | 10a + 10b | 814 ↔ 815, 100
| 7.83297 | 14a + 4b | 816 ↔ 817
| 7.87584 | 11a + 9b | 900
| 8.05748 | 12a + 8b | 802, 805, 808
| 8.23912 | 13a + 7b | 704
| 8.71464 | 14a + 7b | 807
| 9.59632 | 14a + 10b | 820 ↔ 821, 103
| 9.77796 | 15a + 9b | 902 ↔ 903
| 9.95959 | 16a + 8b | 809, 818 ↔ 819
| 11.72295 | 16a + 14b | 105
| 11.86171 | 20a + 8b | 104
| 11.90458 | 17a + 13b | 901
| 12.08622 | 18a + 12b | 803
| 13.10666 | 22a + 9b | 102
| 14.21285 | 20a + 16b | 108
| 14.35160 | 24a + 10b | 107
| 17.06602 | 26a + 16b | 106
| 20.14370 | 30a + 20b | 101
|
|